The future of smart-textiles development: new enabling technologies, commercialization and market trends

Abstract: Smart-textiles development is entering a new era that is characterized by the convergence of different disciplines, such as electronics and polymer sciences. This chapter begins by reviewing the challenges in smart-textiles development and illustrating current trade-offs. Then, the chapter gives an overview of recent technological breakthroughs and shows how new enabling technologies from different disciplines help to overcome technological barriers. Finally, the chapter describes new approaches to the commercialization of smart textiles and reveals potential topics that will shape the future of smart textiles.

[1]  Anton Gustafsson,et al.  STATIC! The Aesthetics of Energy in Everyday Things , 2007 .

[2]  Maciej Sibinski,et al.  Flexible Temperature Sensors on Fibers , 2010, Sensors.

[3]  Piero Cosseddu,et al.  Towards the textile transistor : Assembly and characterization of an organic field effect transistor with a cylindrical geometry , 2006 .

[4]  Hoi-Jun Yoo,et al.  Electrical Characterization of Screen-Printed Circuits on the Fabric , 2010, IEEE Transactions on Advanced Packaging.

[5]  Tien-Wei Shyr,et al.  The Effect of Tensile Hysteresis and Contact Resistance on the Performance of Strain-Resistant Elastic-Conductive Webbing , 2011, Sensors.

[6]  G. Troster,et al.  Electrical characterization of textile transmission lines , 2003 .

[7]  Carter S. Haines,et al.  Biscrolling Nanotube Sheets and Functional Guests into Yarns , 2011, Science.

[8]  C. Brabec,et al.  Solar Power Wires Based on Organic Photovoltaic Materials , 2009, Science.

[9]  Sigurd Wagner,et al.  Overview of Flexible Electronics Technology , 2009 .

[10]  S. Beeby,et al.  Energy harvesting vibration sources for microsystems applications , 2006 .

[11]  R. Koeppe,et al.  Development of energy generating photovoltaic textile structures for smart applications , 2010 .

[12]  Andrea Fischer,et al.  Glaciers, snow and ski tourism in Austria’s changing climate , 2011, Annals of Glaciology.

[13]  Paul Lukowicz,et al.  Textile Pressure Sensor for Muscle Activity and Motion Detection , 2006, 2006 10th IEEE International Symposium on Wearable Computers.

[14]  Massimo Barbaro,et al.  Active Devices Based on Organic Semiconductors for Wearable Applications , 2010, IEEE Transactions on Information Technology in Biomedicine.

[15]  Jan P. F. Lagerwall,et al.  Electrospun microfibres with temperature sensitive iridescence from encapsulated cholesteric liquid crystal , 2010 .

[16]  Heidi Schelhowe,et al.  EduWear: smart textiles as ways of relating computing technology to everyday life , 2009, IDC.

[17]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[18]  Magnus Willander,et al.  Study of the Piezoelectric Power Generation of ZnO Nanowire Arrays Grown by Different Methods , 2011 .

[19]  Geng Wu,et al.  M2M: From mobile to embedded internet , 2011, IEEE Communications Magazine.

[20]  A. Bonfiglio,et al.  Organic electronics on natural cotton fibres , 2011 .

[21]  Andrea Ridolfi,et al.  BIOTEX—Biosensing Textiles for Personalised Healthcare Management , 2010, IEEE Transactions on Information Technology in Biomedicine.

[22]  Gerhard Tröster,et al.  9 – Wearable computing systems – electronic textiles , 2005 .

[23]  E. Laukhina,et al.  Highly piezoresistive textiles based on a soft conducting charge transfer salt , 2011 .

[24]  V. Subramanian,et al.  Weave patterned organic transistors on fiber for E-textiles , 2005, IEEE Transactions on Electron Devices.

[25]  Frank Ko,et al.  Functional Nanofibre: Enabling Material for the Next Generations Smart Textiles , 2008 .

[26]  X. Crispin,et al.  Fiber‐Embedded Electrolyte‐Gated Field‐Effect Transistors for e‐Textiles , 2009, Advanced materials.

[27]  Leah Buechley,et al.  The LilyPad Arduino: using computational textiles to investigate engagement, aesthetics, and diversity in computer science education , 2008, CHI.

[28]  Bart Vandevelde,et al.  Design and implementation of flexible and stretchable systems , 2011, Microelectron. Reliab..

[29]  Stephen Chi-fai Chan,et al.  i*CATch: a scalable plug-n-play wearable computing framework for novices and children , 2010, CHI.

[30]  Martin Kenney,et al.  Structuring the Smartphone Industry: Is the Mobile Internet OS Platform the Key? , 2011 .

[31]  J. Jur,et al.  Atomic Layer Deposition of Conductive Coatings on Cotton, Paper, and Synthetic Fibers: Conductivity Analysis and Functional Chemical Sensing Using “All‐Fiber” Capacitors , 2011 .

[32]  Uwe Hansmann,et al.  Pervasive Computing , 2003 .

[33]  Bo Zhang,et al.  Materials for Printable, Transparent, and Low‐Voltage Transistors , 2011 .

[34]  Voya R. Markovich,et al.  Printable electronics: towards materials development and device fabrication , 2011 .

[35]  Y. C. Vili Investigating Smart Textiles Based on Shape Memory Materials , 2007 .

[36]  Waldemar Karwowski,et al.  Collaborative systems engineering and social-networking approach to design and modelling of smarter products , 2011, Behav. Inf. Technol..

[37]  Athanasios V. Vasilakos Special Issue: Ambient Intelligence , 2008, Inf. Sci..

[38]  Leah Buechley,et al.  An e-sewing tutorial for DIY learning , 2010, IDC.

[39]  Judith Wusteman Editorial: Virtual Research Environments: What Is the Librarian's Role? , 2008, J. Libr. Inf. Sci..

[40]  Darrell H. Reneker,et al.  Polymeric nanofibers: introduction , 2006 .

[41]  Jaeyoung Kim,et al.  All-Printed and Roll-to-Roll-Printable 13.56-MHz-Operated 1-bit RF Tag on Plastic Foils , 2010, IEEE Transactions on Electron Devices.

[42]  Min-Koo Han,et al.  Flexible OLEDs and organic electronics , 2011 .

[43]  Syuzi Pakhchyan Fashioning technology : a DIY intro to smart crafting , 2008 .

[44]  G. Tröster,et al.  Sensor for Measuring Strain in Textile , 2008, Sensors.

[45]  W. Plieth,et al.  Intrinsically Conducting Polymers , 2008 .

[46]  Arved C. Hübler,et al.  Printed Paper Photovoltaic Cells , 2011 .

[47]  Hermann Engesser,et al.  Shapes of things to come , 2006, Informatik-Spektrum.

[48]  Zhong-Lin Wang Towards Self‐Powered Nanosystems: From Nanogenerators to Nanopiezotronics , 2008 .

[49]  Annalisa Bonfiglio,et al.  Smart Garments for Emergency Operators: The ProeTEX Project , 2010, IEEE Transactions on Information Technology in Biomedicine.

[50]  Yasmin B. Kafai,et al.  Fröbel's forgotten gift: textile construction kits as pathways into play, design and computation , 2010, IDC.

[51]  Elias Siores,et al.  An investigation of energy harvesting from renewable sources with PVDF and PZT , 2011 .

[52]  Yi Cui,et al.  Stretchable, porous, and conductive energy textiles. , 2010, Nano letters.

[53]  György Inzelt,et al.  Conducting Polymers: A New Era in Electrochemistry , 2008 .