Chronicles of Sponge Biomaterials: The Saga in Biomedicine

Marine environment is a prolific source of natural products and biomaterials of utmost importance in disease. Sponges are one of the better-known, diverse, multicellular invertebrates and abundant members of marine benthic communities. They are among the richest known sources of biologically active secondary metabolites of pharmaceutical significance. Researchers have been trying to explore the marine sponges not only for their associated pharmaceutical potential but also for the biomaterials including chitin/chitosan, ceramic, biosilica, and collagen since sponges are an excellent source of biocompatible materials to be used in biomedicine. This chapter covers an overview of sponge biomaterials and their possible applications in biomedicine.

[1]  T. Simpson,et al.  The Cell Biology of Sponges , 1984, Springer New York.

[2]  I. Bhatnagar,et al.  Development of marine probiotics: prospects and approach. , 2012, Advances in food and nutrition research.

[3]  M. Vallet‐Regí,et al.  A tissue engineering approach based on the use of bioceramics for bone repair. , 2013, Biomaterials science.

[4]  G. Walker,et al.  Hydroxyapatite bone substitutes developed via replication of natural marine sponges , 2010, Journal of materials science. Materials in medicine.

[5]  W. Müller Silicon biomineralization : biology - biochemistry - molecular biology - biotechnology , 2003 .

[6]  Sandie M. Degnan,et al.  Genomic insights into the marine sponge microbiome , 2012, Nature Reviews Microbiology.

[7]  R. Pallela,et al.  Biophysicochemical evaluation of chitosan-hydroxyapatite-marine sponge collagen composite for bone tissue engineering. , 2012, Journal of biomedical materials research. Part A.

[8]  U. Benatti,et al.  Molecular Characterization of a Nonfibrillar Collagen from the Marine Sponge Chondrosia reniformis Nardo 1847 and Positive Effects of Soluble Silicates on Its Expression , 2011, Marine Biotechnology.

[9]  W. Tremel,et al.  Enzymatic production of biosilica glass using enzymes from sponges: basic aspects and application in nanobiotechnology (material sciences and medicine) , 2007, Naturwissenschaften.

[10]  W. Friess,et al.  Collagen--biomaterial for drug delivery. , 1998, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[11]  J. Imhoff,et al.  Large-Scale Biotechnological Production of the Antileukemic Marine Natural Product Sorbicillactone A , 2007, Marine drugs.

[12]  P. K. Sehgal,et al.  Collagen-coated microparticles in drug delivery , 2009, Expert opinion on drug delivery.

[13]  Hermann Ehrlich,et al.  Chitin and collagen as universal and alternative templates in biomineralization , 2010 .

[14]  D. Faulkner,et al.  Marine natural products. , 2000, Natural product reports.

[15]  J. Marchesi,et al.  Phylogenetic Diversity and Antimicrobial Activities of Fungi Associated with Haliclona simulans Isolated from Irish Coastal Waters , 2009, Marine Biotechnology.

[16]  G. Wörheide,et al.  Structure and composition of calcareous sponge spicules: a review and comparison to structurally related biominerals. , 2008, Micron.

[17]  U. Kolb,et al.  The role of biosilica in the osteoprotegerin/RANKL ratio in human osteoblast-like cells. , 2010, Biomaterials.

[18]  H. Ehrlich,et al.  Chitin-based renewable materials from marine sponges for uranium adsorption. , 2013, Carbohydrate polymers.

[19]  Se-kwon Kim,et al.  Immense Essence of Excellence: Marine Microbial Bioactive Compounds , 2010, Marine drugs.

[20]  Yusuf Chisti,et al.  Producing drugs from marine sponges. , 2003, Biotechnology advances.

[21]  H. Ehrlich,et al.  Ultrastructural studies on the collagen of the marine sponge Chondrosia reniformis Nardo. , 2007, Biomacromolecules.

[22]  Wolfgang Tremel,et al.  Siliceous spicules in marine demosponges (example Suberites domuncula). , 2006, Micron.

[23]  Wolfgang Tremel,et al.  Biofabrication of biosilica-glass by living organisms. , 2008, Natural product reports.

[24]  W. Müller Molecular phylogeny of metazoa (animals): Monophyletic origin , 1995, Naturwissenschaften.

[25]  Se-Kwon Kim Marine Phytochemical Compounds and Their Cosmeceutical Applications , 2016 .

[26]  D. Martens,et al.  Towards Commercial Production of Sponge Medicines , 2009, Marine drugs.

[27]  Ira Bhatnagar,et al.  - Application of Marine Collagen–Based Scaffolds in Bone Tissue Engineering , 2013 .

[28]  R. Pallela,et al.  Biochemical and biophysical characterization of collagens of marine sponge, Ircinia fusca (Porifera: Demospongiae: Irciniidae). , 2011, International journal of biological macromolecules.

[29]  I. Bhatnagar,et al.  Physical, chemical, and biological properties of wonder kelp--Laminaria. , 2011, Advances in food and nutrition research.

[30]  S. Vogel Current-induced flow through living sponges in nature. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[31]  R. Paridaens,et al.  Phase II study of the halichondrin B analog eribulin mesylate in patients with locally advanced or metastatic breast cancer previously treated with an anthracycline, a taxane, and capecitabine. , 2010, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[32]  E. Vuorio,et al.  Silica-based bioactive glasses modulate expression of bone morphogenetic protein-2 mRNA in Saos-2 osteoblasts in vitro. , 2001, Biomaterials.

[33]  H. Ehrlich,et al.  First evidence of the presence of chitin in skeletons of marine sponges. Part II. Glass sponges (Hexactinellida: Porifera). , 2007, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[34]  David W Green,et al.  Tissue bionics: examples in biomimetic tissue engineering , 2008, Biomedical materials.

[35]  M. Custódio,et al.  Natural marine sponges for bone tissue engineering: The state of art and future perspectives. , 2017, Journal of biomedical materials research. Part B, Applied biomaterials.

[36]  R. Santhosh,et al.  Sponges: A Reservoir for Microorganism‐Derived Bioactive Metabolites , 2013 .

[37]  N. Pavlos,et al.  In vitro Evaluation of Natural Marine Sponge Collagen as a Scaffold for Bone Tissue Engineering , 2011, International journal of biological sciences.

[38]  F. Singleton,et al.  A marineMicrococcus produces metabolites ascribed to the spongeTedania ignis , 1988, Experientia.

[39]  J. Imhoff,et al.  The first sorbicillinoid alkaloids, the antileukemic sorbicillactones A and B, from a sponge-derived Penicillium chrysogenum strain , 2005 .

[40]  Josef Kellermann,et al.  Marine sponge collagen: isolation, characterization and effects on the skin parameters surface-pH, moisture and sebum. , 2002, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[41]  D. Morse Silicon biotechnology: harnessing biological silica production to construct new materials , 1999 .

[42]  H. Schröder,et al.  Mineralization of SaOS-2 cells on enzymatically (silicatein) modified bioactive osteoblast-stimulating surfaces. , 2005, Journal of biomedical materials research. Part B, Applied biomaterials.

[43]  M. Maldonado,et al.  First evidence of chitin as a component of the skeletal fibers of marine sponges. Part I. Verongidae (demospongia: Porifera). , 2007, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[44]  S. Bruder,et al.  Tissue engineering of bone. Cell based strategies. , 1999, Clinical orthopaedics and related research.

[45]  François Berthod,et al.  Collagen-Based Biomaterials for Tissue Engineering Applications , 2010, Materials.

[46]  H. Ehrlich,et al.  Nanostructural organization of naturally occurring composites-part II: silica-chitin-based biocomposites , 2008 .

[47]  M. Úriz Mineral skeletogenesis in sponges , 2006 .

[48]  Se-kwon Kim,et al.  Marine Antitumor Drugs: Status, Shortfalls and Strategies , 2010, Marine drugs.

[49]  Ira Bhatnagar,et al.  Chitosan-amylopectin/hydroxyapatite and chitosan-chondroitin sulphate/hydroxyapatite composite scaffolds for bone tissue engineering. , 2012, International journal of biological macromolecules.

[50]  P. Hansma,et al.  Nanostructural features of demosponge biosilica. , 2003, Journal of structural biology.

[51]  M. Maldonado,et al.  Three-dimensional chitin-based scaffolds from Verongida sponges (Demospongiae: Porifera). Part I. Isolation and identification of chitin. , 2010, International journal of biological macromolecules.

[52]  Robert A. Keyzers,et al.  Marine natural products. , 2012, Natural product reports.

[53]  R. Cattaneo-Vietti,et al.  Contribution of Sponge Spicules to the Composition of Biogenic Silica in the Ligurian Sea , 1996 .

[54]  D. Howard,et al.  Natural marine sponge fiber skeleton: a biomimetic scaffold for human osteoprogenitor cell attachment, growth, and differentiation. , 2003, Tissue engineering.

[55]  Martin Nicklas,et al.  Preparation and characterization of marine sponge collagen nanoparticles and employment for the transdermal delivery of 17β-estradiol-hemihydrate , 2009, Drug development and industrial pharmacy.

[56]  D. M. Nelson,et al.  The Silica Balance in the World Ocean: A Reestimate , 1995, Science.

[57]  J. Kreuter,et al.  Microparticles derived from marine sponge collagen (SCMPs): preparation, characterization and suitability for dermal delivery of all-trans retinol. , 2002, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[58]  Devanand P. Kavlekar,et al.  Marine Drugs from Sponge-Microbe Association—A Review , 2010, Marine drugs.

[59]  J. Mano,et al.  Materials of marine origin: a review on polymers and ceramics of biomedical interest , 2012 .