Microarray Probe Expression Measures, Data Normalization and Statistical Validation

DNA microarray technology is a high-throughput method for gaining information on gene function. Microarray technology is based on deposition/synthesis, in an ordered manner, on a solid surface, of thousands of EST sequences/genes/oligonucleotides. Due to the high number of generated datapoints, computational tools are essential in microarray data analysis and mining to grasp knowledge from experimental results. In this review, we will focus on some of the methodologies actually available to define gene expression intensity measures, microarray data normalization, and statistical validation of differential expression.

[1]  E. Dougherty,et al.  Multivariate measurement of gene expression relationships. , 2000, Genomics.

[2]  Cheng Li,et al.  Model-based analysis of oligonucleotide arrays: model validation, design issues and standard error application , 2001, Genome Biology.

[3]  Rafael A Irizarry,et al.  Exploration, normalization, and summaries of high density oligonucleotide array probe level data. , 2003, Biostatistics.

[4]  Rafael A. Irizarry,et al.  An R Package for Analyses of Affymetrix Oligonucleotide Arrays , 2003 .

[5]  R. Tibshirani,et al.  Significance analysis of microarrays applied to the ionizing radiation response , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[6]  T. Speed,et al.  Summaries of Affymetrix GeneChip probe level data. , 2003, Nucleic acids research.

[7]  Pierre Baldi,et al.  A Bayesian framework for the analysis of microarray expression data: regularized t -test and statistical inferences of gene changes , 2001, Bioinform..

[8]  C. Li,et al.  Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Ronald W. Davis,et al.  Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray , 1995, Science.

[10]  S. Dudoit,et al.  STATISTICAL METHODS FOR IDENTIFYING DIFFERENTIALLY EXPRESSED GENES IN REPLICATED cDNA MICROARRAY EXPERIMENTS , 2002 .

[11]  Yi Li,et al.  Higher plant glycosyltransferases , 2001, Genome Biology.

[12]  Terence P. Speed,et al.  A comparison of normalization methods for high density oligonucleotide array data based on variance and bias , 2003, Bioinform..

[13]  R. Calogero,et al.  Microarray data analysis and mining. , 2004, Methods in molecular medicine.

[14]  David M. Rocke,et al.  A Model for Measurement Error for Gene Expression Arrays , 2001, J. Comput. Biol..

[15]  J. Mesirov,et al.  Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. , 1999, Science.

[16]  Tommi S. Jaakkola,et al.  Maximum-likelihood estimation of optimal scaling factors for expression array normalization , 2001, SPIE BiOS.