Hydroinformatics and Data-Based Modelling Issues in Hydrology

This chapter highlights and addresses some basic issues associated with data-based modeling. The chapter starts with a brief description of emergence and development of hydroinformatics as a potent segment of mainstream hydrology and proceeds to the ignored or least considered modeling queries existing in hydrology, e.g., how much benefit could be gained by increased complexity in data-based models or whether increased complexity adversely affects model performance. The chapter reminds one of the need to evaluate existing hypothetic assumptions on various modeling properties.

[1]  H. Akaike Statistical predictor identification , 1970 .

[2]  Matthias Kohler,et al.  Experimental Investigation and Modeling of Uranium (VI) Transport Under Variable Chemical Conditions , 1996 .

[3]  G. J. Klir,et al.  Methodological Principles of Uncertainty in Inductive Modelling: A New Perspective , 1988 .

[4]  Demetris Stathakis,et al.  How many hidden layers and nodes? , 2009 .

[5]  J. Kindler,et al.  New Uncertainty Concepts in Hydrology and Water Resources: On the value of fuzzy concepts in hydrology and water resources management , 1995 .

[6]  A. Soldati,et al.  Forecasting river flow rate during low‐flow periods using neural networks , 1999 .

[7]  Guang-Bin Huang,et al.  Learning capability and storage capacity of two-hidden-layer feedforward networks , 2003, IEEE Trans. Neural Networks.

[8]  Larry D. Haugh,et al.  Identification of Dynamic Regression (Distributed Lag) Models Connecting Two Time Series , 1977 .

[9]  M. B. Beck,et al.  The Identifiability of Conceptual Hydrochemical Models , 1990 .

[10]  Robert J. Abrahart,et al.  Investigating the role of saliency analysis with a neural network rainfall-runoff model , 2001 .

[11]  Jagadeesh Anmala,et al.  Rainfall-Runoff Modeling Using Artificial Neural Networks , 2010 .

[12]  Holger R. Maier,et al.  Neural networks for the prediction and forecasting of water resource variables: a review of modelling issues and applications , 2000, Environ. Model. Softw..

[13]  M. B. Beck,et al.  Water quality modeling: A review of the analysis of uncertainty , 1987 .

[14]  J. Olden,et al.  Redundancy and the choice of hydrologic indices for characterizing streamflow regimes , 2003 .

[15]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[16]  Dimitri Solomatine,et al.  Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology - Part 2: Application , 2009 .

[17]  R. Woods,et al.  Catchment Classification and Hydrologic Similarity , 2006, Geography Compass.

[18]  Hubert H. G. Savenije,et al.  Model complexity control for hydrologic prediction , 2008 .

[19]  Michael J. A. Berry,et al.  Data mining techniques - for marketing, sales, and customer support , 1997, Wiley computer publishing.

[20]  W. Feluch New Uncertainty Concepts in Hydrology and Water Resources: Nonparametric estimation of multivariate density and nonparametric regression , 1995 .

[21]  Zbigniew W. Kundzewicz New Uncertainty Concepts in Hydrology and Water Resources: INTRODUCTION , 1995 .

[22]  Linda See,et al.  Applying soft computing approaches to river level forecasting , 1999 .

[23]  A. W. Jayawardena,et al.  Comparison of Multilayer Perceptron and radial Basis Function networks as tools for flood forecasting , 1996 .

[24]  N. Null Artificial Neural Networks in Hydrology. I: Preliminary Concepts , 2000 .

[25]  K. P. Sudheer,et al.  Identification of physical processes inherent in artificial neural network rainfall runoff models , 2004 .

[26]  Vijay P. Singh,et al.  A toolkit for the development and application of parsimonious hydrological models. , 2002 .

[27]  Robert J. Abrahart,et al.  Using pruning algorithms and genetic algorithms to optimise network architectures and forecasting inputs in a neural network rainfall-runoff model , 1999 .

[28]  N Oreskes,et al.  Verification, Validation, and Confirmation of Numerical Models in the Earth Sciences , 1994, Science.

[29]  Dimitri Solomatine,et al.  Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology - Part 1: Concepts and methodology , 2009 .

[30]  Juan J. Flores,et al.  The application of artificial neural networks to the analysis of remotely sensed data , 2008 .

[31]  Efraim Halfon,et al.  Is there a best model structure? I. Modeling the fate of a toxic substance in a lake , 1983 .

[32]  Igor V. Tetko,et al.  Data modelling with neural networks: Advantages and limitations , 1997, J. Comput. Aided Mol. Des..

[33]  Shie-Yui Liong,et al.  River Stage Forecasting in Bangladesh: Neural Network Approach , 2000 .

[34]  Yann LeCun,et al.  Optimal Brain Damage , 1989, NIPS.

[35]  Holger R. Maier,et al.  Use of artificial neural networks for modelling cyanobacteria Anabaena spp. in the River Murray, South Australia , 1998 .

[36]  Fangju Wang,et al.  The Use of Artificial Neural Networks in a Geographical Information System for Agricultural Land-Suitability Assessment , 1994 .

[37]  Avi Ostfeld,et al.  Data-driven modelling: some past experiences and new approaches , 2008 .

[38]  Zoran Vojinovic,et al.  Towards a hydroinformatics praxis in the service of social justice , 2014 .

[39]  Keith Beven,et al.  The future of distributed models: model calibration and uncertainty prediction. , 1992 .

[40]  Lucien Duckstein,et al.  Reliability in Hydraulic Design , 1987 .

[41]  Ingrid M. Schleiter,et al.  Modelling water quality, bioindication and population dynamics in lotic ecosystems using neural networks , 1999 .

[42]  C. Barnes,et al.  The art of catchment modeling: What is a good model? , 1995 .

[43]  J. R. Kramer,et al.  Evaluating modelling uncertainty for model selection , 2001 .

[44]  Michel Benarie,et al.  Engineering reliability and risk in water resources , 1988 .

[45]  I. Sobola,et al.  Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .

[46]  Robert J. Abrahart,et al.  Neural Network Hydroinformatics: Maintaining Scientific Rigour , 2009 .

[47]  S. Weijs,et al.  Why hydrological predictions should be evaluated using information theory , 2010 .

[48]  Emin Avcı,et al.  Forecasting Daily and Sessional Returns of the ISE - 100 Index with Neural Network Models , 2007 .

[49]  R. Abrahart,et al.  Detection of conceptual model rainfall—runoff processes inside an artificial neural network , 2003 .

[50]  Sevket Durucan,et al.  River flow prediction using artificial neural networks: generalisation beyond the calibration range. , 2000 .

[51]  H. Guterman,et al.  Knowledge extraction from artificial neural network models , 1997, 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation.

[52]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[53]  H. Stowell The emperor's new mind R. Penrose, Oxford University Press, New York (1989) 466 pp. $24.95 , 1990, Neuroscience.

[54]  Mohcine Zouak,et al.  A comparison of linear and neural network ARX models applied to a prediction of the indoor temperature of a building , 2004, Neural Computing & Applications.

[55]  D. Ruppert The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .

[56]  Hubert H. G. Savenije,et al.  HESS Opinions "The art of hydrology" , 2008 .

[57]  Jan G. De Gooijer,et al.  TARSO modeling of water table depths , 1999 .

[58]  M. Abbott Hydroinformatics: Information Technology and the Aquatic Environment , 1991 .

[59]  Keith Beven,et al.  Prophecy, reality and uncertainty in distributed hydrological modelling , 1993 .

[60]  Robert M. Pap,et al.  Handbook of neural computing applications , 1990 .

[61]  Wilfrid S. Kendall,et al.  Networks and Chaos - Statistical and Probabilistic Aspects , 1993 .

[62]  S. F. Mousavi,et al.  An approach to the design of experiments for discriminating among alternative conceptual models , 1992 .

[63]  H. A. Babri,et al.  General approximation theorem on feedforward networks , 1997, Proceedings of ICICS, 1997 International Conference on Information, Communications and Signal Processing. Theme: Trends in Information Systems Engineering and Wireless Multimedia Communications (Cat..

[64]  Keith Beven,et al.  Dalton Medal Lecture: How far can we go in distributed hydrological modelling? , 2001 .

[65]  Igor V. Tetko,et al.  Neural Network Studies, 2. Variable Selection , 1996, J. Chem. Inf. Comput. Sci..

[66]  Robert J. Abrahart,et al.  Hydroinformatics: computational intelligence and technological developments in water science applications—Editorial , 2007 .

[67]  Babak Hassibi,et al.  Second Order Derivatives for Network Pruning: Optimal Brain Surgeon , 1992, NIPS.

[68]  Brian D. Ripley,et al.  Statistical aspects of neural networks , 1993 .

[69]  Holger R. Maier,et al.  Determining Inputs for Neural Network Models of Multivariate Time Series , 1997 .

[70]  Jonathan M. Gregory,et al.  Determining and interpreting the order of a two-state Markov Chain: Application to models of daily precipitation , 1992 .

[71]  Wenrui Huang,et al.  Neural network modeling of salinity variation in Apalachicola River. , 2002, Water research.

[72]  Holger R. Maier,et al.  Input determination for neural network models in water resources applications. Part 1—background and methodology , 2005 .

[73]  I. Kanellopoulos,et al.  Strategies and best practice for neural network image classification , 1997 .

[74]  C. Perrin,et al.  Does a large number of parameters enhance model performance? Comparative assessment of common catchment model structures on 429 catchments , 2001 .

[75]  Erich J. Plate,et al.  Engineering Reliability and Risk in Water Resources , 1987 .

[76]  K. Mizumura New Uncertainty Concepts in Hydrology and Water Resources: Application of fuzzy theory to snowmelt runoff , 1995 .

[77]  Amin Elshorbagy,et al.  Toward Bridging the Gap Between Data-Driven and Mechanistic Models: Cluster-Based Neural Networks for Hydrologic Processes , 2009 .

[78]  John A. Dracup,et al.  Artificial Neural Networks and Long-Range Precipitation Prediction in California , 2000 .

[79]  Kevin Swingler,et al.  Applying neural networks - a practical guide , 1996 .