Molecular Dynamics Based Analysis of Nucleation and Surface Energy of Droplets in Supersaturated Vapors of Methane and Ethane

Homogeneous nucleation processes are characterized by the nucleation rate and the critical droplet size. Molecular dynamics simulation is applied for studying homogeneous nucleation during condensation of supersaturated vapors of methane and ethane. The results are compared with the classical nucleation theory (CNT) and the Laaksonen-Ford-Kulmala (LFK) model that introduces the size dependence of the specific surface energy. It is shown for the nucleation rate that the Yasuoka-Matsumoto method and the mean first passage time method lead to considerably differing results. Even more significant deviations are found between two other approaches to the critical droplet size, based on the maximum of the Gibbs free energy of droplet formation (Yasuoka-Matsumoto) and the supersaturation dependence of the nucleation rate (nucleation theorem). CNT is found to agree reasonably well with the simulation results, whereas LFK leads to large deviations at high temperatures.

[1]  Kenji Yasuoka,et al.  Molecular dynamics of homogeneous nucleation in the vapor phase. II. Water , 1998 .

[2]  W. Marlow,et al.  Study of thermal properties of the metastable supersaturated vapor with the restricted ensemble , 2008 .

[3]  Ford,et al.  Revised parametrization of the Dillmann-Meier theory of homogeneous nucleation. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[4]  J. Alejandre,et al.  Computer simulations of liquid/vapor interface in Lennard-Jones fluids: Some questions and answers , 1999 .

[5]  Bin Chen,et al.  Dumbbells and onions in ternary nucleation. , 2007, Physical chemistry chemical physics : PCCP.

[6]  J. Kirkwood,et al.  The Statistical Mechanical Theory of Surface Tension , 1949 .

[7]  F. Haber ber amorphe Niederschlge und krystallisierte Sole , 1922 .

[8]  A. Laaksonen,et al.  Surface tension and scaling of critical nuclei in diatomic and triatomic fluids. , 2007, The Journal of chemical physics.

[9]  J. Feder,et al.  Homogeneous nucleation and growth of droplets in vapours , 1966 .

[10]  R. Tolman The Effect of Droplet Size on Surface Tension , 1949 .

[11]  Vladimir G. Baidakov,et al.  Thermal and caloric equations of state for stable and metastable Lennard-Jones fluids: I. Molecular-dynamics simulations , 2008 .

[12]  Kenji Yasuoka,et al.  Molecular dynamics of homogeneous nucleation in the vapor phase. I. Lennard-Jones fluid , 1998 .

[13]  J. Curtius,et al.  Nucleation of atmospheric aerosol particles , 2006 .

[14]  Hans Hasse,et al.  A Set of Molecular Models for Symmetric Quadrupolar Fluids , 2001 .

[15]  Kiyoshi Nakazawa,et al.  Tests of the homogeneous nucleation theory with molecular-dynamics simulations. I. Lennard-Jones molecules. , 2005, The Journal of chemical physics.

[16]  D. Oxtoby,et al.  A general relation between the nucleation work and the size of the nucleus in multicomponent nucleation , 1994 .

[17]  M. Volmer,et al.  Keimbildung in übersättigten Gebilden , 1926 .

[18]  M. Kulmala,et al.  Nucleation studies in the Martian atmosphere , 2005 .

[19]  泰岡 顕治 Molecular dynamics of homogeneous nucleation in vapor phase , 1997 .

[20]  J. M. Reeves,et al.  Particle Formation by Ion Nucleation in the Upper Troposphere and Lower Stratosphere , 2003, Science.

[21]  Hans Hasse,et al.  Thermal properties of the metastable supersaturated vapor of the Lennard-Jones fluid. , 2005, The Journal of chemical physics.

[22]  Guido Reina,et al.  Homogeneous nucleation in supersaturated vapors of methane, ethane, and carbon dioxide predicted by brute force molecular dynamics. , 2008, The Journal of chemical physics.

[23]  J. Böhm,et al.  Über Amorphe Niederschläge und kristallisierte Sole , 1923 .

[24]  David Reguera,et al.  Finite-size effects in simulations of nucleation. , 2006, The Journal of chemical physics.

[25]  Hans Hasse,et al.  Comprehensive study of the vapour–liquid coexistence of the truncated and shifted Lennard–Jones fluid including planar and spherical interface properties , 2006 .

[26]  Jeffrey R Errington,et al.  Comparative study of the effect of tail corrections on surface tension determined by molecular simulation. , 2007, The journal of physical chemistry. B.

[27]  T. Kraska,et al.  Homogeneous nucleation and growth in supersaturated zinc vapor investigated by molecular dynamics simulation. , 2007, The Journal of chemical physics.

[28]  Toshikazu Ebisuzaki,et al.  Extended study of molecular dynamics simulation of homogeneous vapor-liquid nucleation of water. , 2007, The Journal of chemical physics.