Active random walkers simulate trunk trail formation by ants.

A simple model for interactive structure formation is studied to simulate the trail formation by ants based on local chemical communication. In our model, active random walkers, which do not have the ability of visual navigation or storage of information, first have to discover different distributions of food sources and then have to link these sources to a central place by forming a trail, using no other guidance than the chemical markings produced by themselves. The simulations show the spontaneous emergence of a collective trail system due to self-organization, which is both stable and flexible, to include newly discovered sources. The typical dendritic foraging patterns of desert ants, reported by Hölldobler and Möglich (Insectes Sociaux. 1980. 27(3). pp. 237 264) are reproduced by the simulations.

[1]  Leah Edelstein-Keshet,et al.  Simple models for trail-following behaviour; Trunk trails versus individual foragers , 1994 .

[2]  Lutz Schimansky-Geier,et al.  Clustering of “active” walkers in a two-component system , 1994 .

[3]  R. D. Pochy,et al.  Active walker models: tracks and landscapes , 1992 .

[4]  R Wehner,et al.  Path integration in desert ants, Cataglyphis fortis. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[5]  D. DeAngelis,et al.  Individual-Based Models and Approaches in Ecology , 1992 .

[6]  Angela Stevens,et al.  Simulations of the Gliding Behavior and Aggregation of Myxobacteria , 1990 .

[7]  D. DeAngelis,et al.  New Computer Models Unify Ecological TheoryComputer simulations show that many ecological patterns can be explained by interactions among individual organisms , 1988 .

[8]  T. C. Schneirla Studies on army ants in Panama. , 1933 .

[9]  Harvey Gould,et al.  Active‐Walker Models: Growth and form in Nonequilibrium Systems , 1993 .

[10]  E. Wilson The Insect Societies , 1974 .

[11]  Nigel R. Franks,et al.  The behavioural ecology of ants. , 1987 .

[12]  J. Haefner,et al.  Spatial Model of Movement and Foraging in Harvester Ants (Pogonomyrmex) (I): The Roles of Memory and Communication , 1994 .

[13]  D. Cliff From animals to animats , 1994, Nature.

[14]  Jean-Louis Deneubourg,et al.  A Model for Trail Following in Ants: Individual and Collective Behaviour , 1990 .

[15]  A. I.,et al.  Neural Field Continuum Limits and the Structure–Function Partitioning of Cognitive–Emotional Brain Networks , 2023, Biology.

[16]  T. C. Schneirla Further studies of the army-ant behavior pattern. Mass organization in the swarm-raiders. , 1940 .

[17]  R. Fürth,et al.  Die Brownsche Bewegung bei Berücksichtigung einer Persistenz der Bewegungsrichtung. Mit Anwendungen auf die Bewegung lebender Infusorien , 1920 .

[18]  THE LIFE HISTORY OF THE CARPENTER ANT , 1908 .

[19]  R. Menzel,et al.  Do insects have cognitive maps? , 1990, Annual review of neuroscience.

[20]  H. Berg Random Walks in Biology , 2018 .

[21]  Lui Lam,et al.  Active walker models for complex systems , 1995 .

[22]  W. Alt Biased random walk models for chemotaxis and related diffusion approximations , 1980, Journal of mathematical biology.

[23]  H. Gould,et al.  Polymer chain statistics and universality: Crossover from random to self‐avoiding walks , 1984 .

[24]  James W. Haefner,et al.  Spatial Model of Movement and Foraging in Harvester Ants (Pogonomyrmex) (II): The Roles of Environment and Seed Dispersion , 1994 .

[25]  Fachbereich Biologie der Universit Zur Jagdstrategie einiger orientalischer Leptogenys-Arten (Formicidae : Ponerinae)* , 1975 .

[26]  Pattie Maes,et al.  Designing autonomous agents: Theory and practice from biology to engineering and back , 1990, Robotics Auton. Syst..

[27]  R. Matthews,et al.  Ants. , 1898, Science.

[28]  R. Wehner Spatial organization of foraging behavior in individually searching desert ants, Cataglyphis (Sahara Desert) and Ocymyrmex (Namib Desert) , 1987 .