We describe the use of liquid-phase continuous-wave cavity ring-down spectroscopy for the detection of an HPLC separation. This technique builds on earlier work by Snyder and Zare using pulsed laser sources and improves upon commercially available UV-visible detectors by a factor of up to 50. The system employs a compact doubled-diode single-mode continuous-wave laser operating at 488 nm and a previously described Brewster's-angle flow cell. Ring-down time constants as long as 5.8 micros were observed with liquid samples in a 0.3-mm path length cell. The baseline noise during an HPLC separation was only 2 x 10(-7) absorbance units (AU) peak to peak, as compared to 1 x 10(-5) AU for a state-of-the-art commercial UV-visible detector.