Macroscopic ultra-low friction and wear enabled by carboxylated graphene with glycerol

[1]  Haoyu Deng,et al.  Macroscale Superlubricity with Ultralow Wear and Ultrashort Running-In Period (∼1 s) through Phytic Acid-Based Complex Green Liquid Lubricants. , 2023, ACS applied materials & interfaces.

[2]  A. Rosenkranz,et al.  Macroscale Superlubricity Induced by MXene/MoS2 Nanocomposites on Rough Steel Surfaces under High Contact Stresses. , 2023, ACS nano.

[3]  Yonghong Fu,et al.  Unravelling High-Load Superlubricity of Ionic Liquid Analogues by In Situ Raman: Incomplete Hydration Induced by Competitive Exchange of External Water with Crystalline Water. , 2023, The journal of physical chemistry letters.

[4]  Jianbin Luo,et al.  Genesis of Superlow Friction in Strengthening Si-DLC/PLC Nanostructured Multilayer Films for Robust Superlubricity at Ultrahigh Contact Stress. , 2022, ACS applied materials & interfaces.

[5]  Jianbin Luo,et al.  Simple But Effective: Liquid Superlubricity with High Load Capacity Achieved by Ionic Liquids , 2022, SSRN Electronic Journal.

[6]  T. Glatzel,et al.  Observation of robust superlubricity of MoS2 on Au(111) in ultrahigh vacuum , 2022, Applied Surface Science.

[7]  Chenhui Zhang,et al.  Unlocking the secrets behind liquid superlubricity: A state-of-the-art review on phenomena and mechanisms , 2022, Friction.

[8]  A. Erdemir,et al.  Achieving Ultralow Friction and Wear by Tribocatalysis: Enabled by In-Operando Formation of Nanocarbon Films. , 2021, ACS nano.

[9]  Xinchun Chen,et al.  A New Pathway for Superlubricity in a Multilayered MoS2-Ag Film under Cryogenic Environment. , 2021, Nano letters.

[10]  Hui-di Zhou,et al.  Tribochemistry of superlubricating amorphous carbon films. , 2021, Chemical Communications.

[11]  Kenji Watanabe,et al.  UItra-low friction and edge-pinning effect in large-lattice-mismatch van der Waals heterostructures , 2021, Nature Materials.

[12]  Jianbin Luo,et al.  Origin of friction and the new frictionless technology—Superlubricity: Advancements and future outlook , 2021 .

[13]  Jianbin Luo,et al.  Shear-Induced Interfacial Structural Conversion Triggers Macroscale Superlubricity: From Black Phosphorus Nanoflakes to Phosphorus Oxide. , 2021, ACS applied materials & interfaces.

[14]  Junyan Zhang,et al.  Grown of superlubricity a-C:H/MoS2 film on 9Cr18Mo steel for industrial application , 2021 .

[15]  T. He,et al.  Achieving macroscale liquid superlubricity using glycerol aqueous solutions , 2021 .

[16]  A. Sumant,et al.  Achieving superlubricity with 2D transition metal carbides (MXenes) and MXene/graphene coatings , 2021 .

[17]  M. Moseler,et al.  In Situ Synthesis of Graphene Nitride Nanolayers on Glycerol-Lubricated Si3N4 for Superlubricity Applications , 2021 .

[18]  Jing Zhang,et al.  Superlow friction of amorphous diamond-like carbon films in humid ambient enabled by hexagonal boron nitride nanosheet wrapped carbon nanoparticles , 2020 .

[19]  Wei-min Liu,et al.  Ionic liquid lubricants: when chemistry meets tribology. , 2020, Chemical Society reviews.

[20]  Lei Chen,et al.  Toward Robust Macroscale Superlubricity on Engineering Steel Substrate , 2020, Advanced materials.

[21]  Yuhong Liu,et al.  Superlubricity achieved with two-dimensional nano-additives to liquid lubricants , 2020, Friction.

[22]  L. Qian,et al.  Nanoasperity adhesion of silicon surface in humid air: the roles of surface chemistry and oxidized layer structure. , 2020, Langmuir : the ACS journal of surfaces and colloids.

[23]  Jianbin Luo,et al.  Macroscale Superlubricity Achieved on the Hydrophobic Graphene Coating with Glycerol. , 2020, ACS applied materials & interfaces.

[24]  G. Paterakis,et al.  Tunable macroscale structural superlubricity in two-layer graphene via strain engineering , 2020, Nature Communications.

[25]  I. Parkin,et al.  Macroscale Superlubricity Enabled by Graphene‐Coated Surfaces , 2020, Advanced science.

[26]  Jianbin Luo,et al.  Water-based superlubricity in vacuum , 2019 .

[27]  Jianbin Luo,et al.  Macroscale Superlubricity Enabled by the Synergy Effect of Graphene-Oxide Nanoflakes and Ethanediol. , 2018, ACS applied materials & interfaces.

[28]  E. Meyer,et al.  Structural superlubricity and ultralow friction across the length scales , 2018, Nature.

[29]  Ashlie Martini,et al.  Emerging superlubricity: A review of the state of the art and perspectives on future research , 2018, Applied Physics Reviews.

[30]  Jianbin Luo,et al.  Superlubricity of 1,3-diketone based on autonomous viscosity control at various velocities , 2018, Tribology International.

[31]  Quanshui Zheng,et al.  Robust microscale superlubricity in graphite/hexagonal boron nitride layered heterojunctions , 2018, Nature Materials.

[32]  M. Chaigneau,et al.  In situ topographical chemical and electrical imaging of carboxyl graphene oxide at the nanoscale , 2018, Nature Communications.

[33]  Kenji Watanabe,et al.  Twistable electronics with dynamically rotatable heterostructures , 2018, Science.

[34]  B. Narayanan,et al.  Operando tribochemical formation of onion-like-carbon leads to macroscale superlubricity , 2018, Nature Communications.

[35]  Ali Erdemir,et al.  Approaches for Achieving Superlubricity in Two-Dimensional Materials. , 2018, ACS nano.

[36]  Peter V Coveney,et al.  Graphene–Graphene Interactions: Friction, Superlubricity, and Exfoliation , 2018, Advanced materials.

[37]  Seong H. Kim,et al.  Friction and Tribochemical Wear Behaviors of Native Oxide Layer on Silicon at Nanoscale , 2017, Tribology Letters.

[38]  L. Qian,et al.  What Governs Friction of Silicon Oxide in Humid Environment: Contact Area between Solids, Water Meniscus around the Contact, or Water Layer Structure? , 2017, Langmuir : the ACS journal of surfaces and colloids.

[39]  K. Holmberg,et al.  Influence of tribology on global energy consumption, costs and emissions , 2017 .

[40]  Xianlong Wei,et al.  Superlubricity between MoS2 Monolayers , 2017, Advanced materials.

[41]  Jianbin Luo,et al.  Investigation of running-in process in water-based lubrication aimed at achieving super-low friction , 2016 .

[42]  Qunfeng Zeng,et al.  Green superlubricity of Nitinol 60 alloy against steel in presence of castor oil , 2016, Scientific Reports.

[43]  E. Meyer,et al.  Superlubricity of graphene nanoribbons on gold surfaces , 2016, Science.

[44]  Jianbin Luo,et al.  Investigation of the difference in liquid superlubricity between water- and oil-based lubricants , 2015 .

[45]  Sanket A. Deshmukh,et al.  Macroscale superlubricity enabled by graphene nanoscroll formation , 2015, Science.

[46]  Sanket A. Deshmukh,et al.  Extraordinary Macroscale Wear Resistance of One Atom Thick Graphene Layer , 2014 .

[47]  A. Erdemir,et al.  Achieving superlubricity in DLC films by controlling bulk, surface, and tribochemistry , 2014 .

[48]  Ruibing Wang,et al.  A rapid low-temperature synthetic method leading to large-scale carboxyl graphene , 2014 .

[49]  Quanshui Zheng,et al.  Observation of microscale superlubricity in graphite. , 2012, Physical review letters.

[50]  Jianbin Luo,et al.  Superlubricity behavior with phosphoric acid-water network induced by rubbing. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[51]  J. M. Martin,et al.  Full Film, Boundary Lubrication and Tribochemistry in Steel Circular Contacts Lubricated with Glycerol , 2011 .

[52]  L. Qian,et al.  Effect of surface hydrophilicity on the nanofretting behavior of Si(100) in atmosphere and vacuum , 2010 .

[53]  H. Lei,et al.  Lubricating Properties of Organic Phosphate Ester Aqueous Solutions , 2010 .

[54]  E. Charlaix,et al.  Nanofluidics, from bulk to interfaces. , 2009, Chemical Society reviews.

[55]  Jacob Klein,et al.  Lubrication at Physiological Pressures by Polyzwitterionic Brushes , 2009, Science.

[56]  M. Yudasaka,et al.  Site identification of carboxyl groups on graphene edges with Pt derivatives. , 2008, ACS nano.

[57]  W. Goddard,et al.  Superlubricity and tribochemistry of polyhydric alcohols , 2008 .

[58]  Andre K. Geim,et al.  Raman spectrum of graphene and graphene layers. , 2006, Physical review letters.

[59]  K. Sharp,et al.  Hydrogen bonding and the cryoprotective properties of glycerol/water mixtures. , 2006, The journal of physical chemistry. B.

[60]  Hans-Jürgen Butt,et al.  Boundary slip in Newtonian liquids: a review of experimental studies , 2005 .

[61]  J. Frenken,et al.  Superlubricity of graphite. , 2004, Physical review letters.

[62]  Uri Raviv,et al.  Lubrication by charged polymers , 2003, Nature.

[63]  H. Verweij,et al.  tribological properties of nanoscale alumina-zirconia composites , 1999 .

[64]  Hirano,et al.  Atomistic locking and friction. , 1990, Physical review. B, Condensed matter.

[65]  D. Dowson,et al.  Isothermal Elastohydrodynamic Lubrication of Point Contacts: Part III—Fully Flooded Results , 1976 .

[66]  J. Archard Contact and Rubbing of Flat Surfaces , 1953 .

[67]  Jacob Klein,et al.  Hydration lubrication , 2013 .

[68]  R. Car,et al.  Raman spectra of graphite oxide and functionalized graphene sheets. , 2008, Nano letters.

[69]  T. Tallián On Competing Failure Modes in Rolling Contact , 1967 .