Direct imaging of layered O3- and P2-NaxFe1/2Mn1/2O2 structures at the atomic scale.

Using aberration-corrected scanning transmission electron microscopy (STEM) with high-angle annular-dark-field (HAADF) and annular-bright-field (ABF) techniques, the atomic-scale structures of the O3 and P2 phases of NaxFe1/2Mn1/2O2 are investigated systematically. The Na, transition metal M (Fe and Mn) and O columns are well revealed and precisely assigned to the O3 and P2 phase layered structures. The O3 phase sample demonstrates larger atomic site fluctuations along [001] direction but with less structural imperfections (e.g. interlayer structure and stacking defaults) than the P2 phase sample. Furthermore, a clear surface with a regular structure is observed for the O3-NaFe1/2Mn1/2O2 sample, while a surface with a large amount of Na-M antisites is observed for the P2-Na2/3Fe1/2Mn1/2O2 sample.

[1]  Lin Gu,et al.  Atomic Structure and Kinetics of NASICON NaxV2(PO4)3 Cathode for Sodium‐Ion Batteries , 2014 .

[2]  Jiangfeng Qian,et al.  P2-type Na0.67Mn0.65Fe0.2Ni0.15O2 Cathode Material with High-capacity for Sodium-ion Battery , 2014 .

[3]  Xiqian Yu,et al.  A size-dependent sodium storage mechanism in Li4Ti5O12 investigated by a novel characterization technique combining in situ X-ray diffraction and chemical sodiation. , 2013, Nano letters.

[4]  K. Kang,et al.  A new high-energy cathode for a Na-ion battery with ultrahigh stability. , 2013, Journal of the American Chemical Society.

[5]  Xia Lu,et al.  Sodium Storage and Transport Properties in Layered Na2Ti3O7 for Room‐Temperature Sodium‐Ion Batteries , 2013 .

[6]  Yuesheng Wang,et al.  A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries , 2013, Nature Communications.

[7]  Liquan Chen,et al.  Room-temperature stationary sodium-ion batteries for large-scale electric energy storage , 2013 .

[8]  Teófilo Rojo,et al.  Update on Na-based battery materials. A growing research path , 2013 .

[9]  Lin Gu,et al.  Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries , 2013, Nature Communications.

[10]  Donghan Kim,et al.  Sodium‐Ion Batteries , 2013 .

[11]  John B Goodenough,et al.  A superior low-cost cathode for a Na-ion battery. , 2013, Angewandte Chemie.

[12]  Mark N. Obrovac,et al.  Structure and Electrochemistry of NaxFexMn1-xO2 (1.0 , 2013 .

[13]  M. Obrovac,et al.  Structure and Electrochemistry of NaxFexMn1-xO2 (1.0 ≤ x ≤ 0.5) for Na-Ion Battery Positive Electrodes , 2013 .

[14]  Yong‐Sheng Hu,et al.  New insight into the atomic structure of electrochemically delithiated O3-Li(₁-x)CoO₂ (0 ≤ x ≤ 0.5) nanoparticles. , 2012, Nano letters.

[15]  Tatsuya Saito,et al.  High power Na-ion rechargeable battery with single-crystalline Na0.44MnO2 nanowire electrode , 2012 .

[16]  Xiaogang Han,et al.  Porous amorphous FePO4 nanoparticles connected by single-wall carbon nanotubes for sodium ion battery cathodes. , 2012, Nano letters.

[17]  Junmei Zhao,et al.  Monodisperse iron phosphate nanospheres: preparation and application in energy storage. , 2012, ChemSusChem.

[18]  M. Armand,et al.  Disodium Terephthalate (Na2C8H4O4) as High Performance Anode Material for Low‐Cost Room‐Temperature Sodium‐Ion Battery , 2012 .

[19]  Gerbrand Ceder,et al.  Electrode Materials for Rechargeable Sodium‐Ion Batteries: Potential Alternatives to Current Lithium‐Ion Batteries , 2012 .

[20]  Lin Gu,et al.  Lithium Storage in Li4Ti5O12 Spinel: The Full Static Picture from Electron Microscopy , 2012, Advanced materials.

[21]  Shinichi Komaba,et al.  P2-type Na(x)[Fe(1/2)Mn(1/2)]O2 made from earth-abundant elements for rechargeable Na batteries. , 2012, Nature materials.

[22]  Shinichi Komaba,et al.  Study on the reversible electrode reaction of Na(1-x)Ni(0.5)Mn(0.5)O2 for a rechargeable sodium-ion battery. , 2012, Inorganic chemistry.

[23]  Jean-Marie Tarascon,et al.  Synthesis, Structure, and Electrochemical Properties of the Layered Sodium Insertion Cathode Material: NaNi1/3Mn1/3Co1/3O2 , 2012 .

[24]  Lin Gu,et al.  Highly ordered staging structural interface between LiFePO4 and FePO4. , 2012, Physical chemistry chemical physics : PCCP.

[25]  Huilin Pan,et al.  Spinel lithium titanate (Li4Ti5O12) as novel anode material for room-temperature sodium-ion battery , 2012 .

[26]  Donghan Kim,et al.  Layered Na[Ni1/3Fe1/3Mn1/3]O2 cathodes for Na-ion battery application , 2012 .

[27]  Huilin Pan,et al.  Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries , 2012 .

[28]  Kazuma Gotoh,et al.  Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard‐Carbon Electrodes and Application to Na‐Ion Batteries , 2011 .

[29]  Yong‐Sheng Hu,et al.  Atomic-scale investigation on lithium storage mechanism in TiNb2O7, , 2011 .

[30]  Lin Gu,et al.  Direct observation of lithium staging in partially delithiated LiFePO4 at atomic resolution. , 2011, Journal of the American Chemical Society.

[31]  Yan Yu,et al.  Direct Imaging of Lithium Ions Using Aberration-Corrected Annular-Bright-Field Scanning Transmission Electron Microscopy and Associated Contrast Mechanisms , 2011 .

[32]  P. Bruce,et al.  The lithium intercalation process in the low-voltage lithium battery anode Li(1+x)V(1-x)O2. , 2011, Nature materials.

[33]  D Carlier,et al.  Electrochemical investigation of the P2–NaxCoO2 phase diagram. , 2011, Nature materials.

[34]  N. Shibata,et al.  Dynamics of annular bright field imaging in scanning transmission electron microscopy. , 2010, Ultramicroscopy.

[35]  Naoya Shibata,et al.  Robust atomic resolution imaging of light elements using scanning transmission electron microscopy , 2009 .

[36]  F. Chou,et al.  Sodium-ion diffusion and ordering in single-crystal P 2 -Na x CoO 2 , 2008 .

[37]  R. Cava,et al.  Crystal structure and elementary properties of NaxCoO2 ( x=0.32 , 0.51, 0.6, 0.75, and 0.92) in the three-layer NaCoO2 family , 2006, cond-mat/0601587.

[38]  Gerbrand Ceder,et al.  First-principles investigation of phase stability in Li x CoO 2 , 1998 .

[39]  J. Tarascon,et al.  CoO2, the end member of the LixCoO2 solid solution , 1996 .

[40]  J. Dahn,et al.  Electrochemical and In Situ X‐Ray Diffraction Studies of Lithium Intercalation in Li x CoO2 , 1992 .

[41]  T. R. Jow,et al.  Rechargeable Electrodes from Sodium Cobalt Bronzes , 1988 .

[42]  P. Hagenmuller,et al.  New layered structure obtained by electrochemical deintercalation of the metastable LiCoO2 (O2) variety , 1984 .

[43]  P. Hagenmuller,et al.  Electronic and electrochemical properties of NaxCoO2−y cathode , 1983 .

[44]  P. Hagenmuller,et al.  Electrochemical intercalation of sodium in NaxCoO2 bronzes , 1981 .

[45]  P. Hagenmuller,et al.  Comportement electrochimique des phases NaxCoO2 , 1980 .

[46]  P. Hagenmuller,et al.  Structural classification and properties of the layered oxides , 1980 .