Designing high-fidelity multi-qubit gates for semiconductor quantum dots through deep reinforcement learning

In this paper, we present a machine learning framework to design high-fidelity multi-qubit gates for quantum processors based on quantum dots in silicon, with qubits encoded in the spin of single electrons. In this hardware architecture, the control landscape is vast and complex, so we use the deep reinforcement learning method to design optimal control pulses to achieve high fidelity multi-qubit gates. In our learning model, a simulator models the physical system of quantum dots and performs the time evolution of the system, and a deep neural network serves as the function approximator to learn the control policy. We evolve the Hamiltonian in the full state-space of the system, and enforce realistic constraints to ensure experimental feasibility.

[1]  D. E. Savage,et al.  A programmable two-qubit quantum processor in silicon , 2017, Nature.

[2]  J. Verduijn Silicon Quantum Electronics , 2012 .

[3]  Robert Kosut,et al.  Optimal control of two qubits via a single cavity drive in circuit quantum electrodynamics , 2017, 1703.06077.

[4]  Zhan Shi,et al.  Quantum control and process tomography of a semiconductor quantum dot hybrid qubit , 2014, Nature.

[5]  H. Cheong,et al.  Coherent manipulation of electronic States in a double quantum dot. , 2003, Physical review letters.

[6]  Yuval Tassa,et al.  Continuous control with deep reinforcement learning , 2015, ICLR.

[7]  Christiane P. Koch,et al.  Charting the circuit QED design landscape using optimal control theory , 2016, 1606.08825.

[8]  Charles Tahan,et al.  Charge-noise-insensitive gate operations for always-on, exchange-only qubits , 2016, 1602.00320.

[9]  Barry C Sanders,et al.  High-Fidelity Single-Shot Toffoli Gate via Quantum Control. , 2015, Physical review letters.

[10]  Alec Radford,et al.  Proximal Policy Optimization Algorithms , 2017, ArXiv.

[11]  R Brunner,et al.  Two-qubit gate of combined single-spin rotation and interdot spin exchange in a double quantum dot. , 2011, Physical review letters.

[12]  D. Loss,et al.  Electric-dipole-induced spin resonance in quantum dots , 2006, cond-mat/0601674.

[13]  W. Wegscheider,et al.  Efficient Orthogonal Control of Tunnel Couplings in a Quantum Dot Array , 2020, Physical Review Applied.

[14]  M. Veldhorst,et al.  Universal quantum logic in hot silicon qubits , 2019, Nature.

[15]  Timo O. Reiss,et al.  Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. , 2005, Journal of magnetic resonance.

[16]  Tzyh Jong Tarn,et al.  Fidelity-Based Probabilistic Q-Learning for Control of Quantum Systems , 2014, IEEE Transactions on Neural Networks and Learning Systems.

[17]  C. Buizert,et al.  Driven coherent oscillations of a single electron spin in a quantum dot , 2006, Nature.

[18]  A. Gossard,et al.  Quantum coherence in a one-electron semiconductor charge qubit. , 2010, Physical review letters.

[19]  Wojciech Zaremba,et al.  OpenAI Gym , 2016, ArXiv.

[20]  Sergio Boixo,et al.  Introduction to Quantum Algorithms for Physics and Chemistry , 2012, 1203.1331.

[21]  Mark Friesen,et al.  Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot. , 2014, Nature nanotechnology.

[22]  Hartmut Neven,et al.  Universal quantum control through deep reinforcement learning , 2018, npj Quantum Information.

[23]  L. Vandersypen,et al.  Supporting Online Material for Coherent Control of a Single Electron Spin with Electric Fields Materials and Methods Som Text Figs. S1 and S2 References , 2022 .

[24]  Jacob M. Taylor,et al.  Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots , 2005, Science.

[25]  Saeed Fallahi,et al.  Noise Suppression Using Symmetric Exchange Gates in Spin Qubits. , 2015, Physical review letters.

[26]  Barry C. Sanders,et al.  Designing High-Fidelity Single-Shot Three-Qubit Gates: A Machine Learning Approach , 2015, ArXiv.

[27]  Klaus Molmer,et al.  Fidelity of quantum operations , 2007 .

[28]  Xuedong Hu,et al.  Fast hybrid silicon double-quantum-dot qubit. , 2011, Physical review letters.

[29]  L. Vandersypen,et al.  Spins in few-electron quantum dots , 2006, cond-mat/0610433.

[30]  A. Gruslys,et al.  Comparing, optimizing, and benchmarking quantum-control algorithms in a unifying programming framework , 2010, 1011.4874.

[31]  S. Das Sarma,et al.  Generic Hubbard model description of semiconductor quantum dot spin qubits , 2011, 1101.3311.

[32]  A. Wieck,et al.  Charge noise and spin noise in a semiconductor quantum device , 2013, Nature Physics.

[33]  Marek Perkowski,et al.  Machine-learning based three-qubit gate for realization of a Toffoli gate with cQED-based transmon systems , 2019, ArXiv.

[34]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[35]  Tommaso Calarco,et al.  Dressing the chopped-random-basis optimization: A bandwidth-limited access to the trap-free landscape , 2015, 1506.04601.

[36]  Jacob M. Taylor,et al.  Quantum-dot-based resonant exchange qubit. , 2013, Physical review letters.

[37]  D. DiVincenzo,et al.  Quantum computation with quantum dots , 1997, cond-mat/9701055.

[38]  Barry C. Sanders,et al.  Quantum control for high-fidelity multi-qubit gates , 2018, New Journal of Physics.

[39]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[40]  Andrew W. Moore,et al.  Reinforcement Learning: A Survey , 1996, J. Artif. Intell. Res..

[41]  J. P. Dehollain,et al.  A two-qubit logic gate in silicon , 2014, Nature.

[42]  Jacob M. Taylor,et al.  Self-consistent measurement and state tomography of an exchange-only spin qubit. , 2013, Nature nanotechnology.

[43]  T. Hensgens,et al.  Emulating Fermi-Hubbard physics with quantum dots : from few to more and how to , 2018 .

[44]  Yudong Cao,et al.  OpenFermion: the electronic structure package for quantum computers , 2017, Quantum Science and Technology.

[45]  A. Yacoby,et al.  Universal quantum control of two-electron spin quantum bits using dynamic nuclear polarization , 2009, 1009.5343.

[46]  N. Khammassi,et al.  Machine-learning-based three-qubit gate design for the Toffoli gate and parity check in transmon systems , 2020 .

[47]  James Medford,et al.  Spin qubits in double and triple quantum dots , 2013 .

[48]  Toshiaki Hayashi,et al.  Rotation and phase-shift operations for a charge qubit in a double quantum dot , 2004 .

[49]  John King Gamble,et al.  Pulse-gated quantum-dot hybrid qubit. , 2012, Physical review letters.