Three-dimensional simulation of a solid-liquid flow by the DEM-SPH method

Abstract In this paper, we describe a new Lagrangian–Lagrangian algorithm, which is referred to be the DEM–SPH method, for solid–liquid flows involving free surfaces. The DEM solid phase and the SPH liquid phase are coupled using the local averaging technique described by Lagrangian approaches, where both the continuity equation and the interaction force, i.e. drag force, are connected with the local mean voidage. Conservative forms of momentum transformation are derived for the DEM–SPH interaction via a variational approach. By introducing a correction to the SPH approximation with explicit inclusion of boundary information, arbitrary boundaries can be modeled without any extra wall particles, where the boundary is used commonly for both DEM and SPH phases. We deploy level-set distance functions to efficiently construct and evaluate this boundary model. To examine the validity of the present method, we perform three-dimensional simulations of a dynamic flow in a solid–liquid dam break and a quasi-steady flow in a rotating cylindrical tank; and we conduct validation experiments to justify the simulation results. In the dam-break problem, positions of wave fronts during the collapse are computed and compared with experimental measurements; for the circulating tank, some macroscopic aspects of the steady flow, e.g. the shape, dimension and velocity profile of the solid bed, are obtained for validation data. In both cases, the simulation results are in good agreement with those of the experiment. Consequently, the DEM–SPH method is proved to be adequate in modeling solid–liquid flows through this study.

[1]  Sivakumar Kulasegaram,et al.  Variational formulation for the smooth particle hydrodynamics (SPH) simulation of fluid and solid problems , 2004 .

[2]  J. Monaghan Simulating Free Surface Flows with SPH , 1994 .

[3]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[4]  Abbas Khayyer,et al.  Modified Moving Particle Semi-implicit methods for the prediction of 2D wave impact pressure , 2009 .

[5]  Roland W. Lewis,et al.  A variational formulation based contact algorithm for rigid boundaries in two-dimensional SPH applications , 2004 .

[6]  C. Wen Mechanics of Fluidization , 1966 .

[7]  T. B. Anderson,et al.  Fluid Mechanical Description of Fluidized Beds. Equations of Motion , 1967 .

[8]  Benedict D. Rogers,et al.  Numerical Modeling of Water Waves with the SPH Method , 2006 .

[9]  Melany L. Hunt,et al.  Liquid–solid flows using smoothed particle hydrodynamics and the discrete element method , 2001 .

[10]  Gary A. Dilts,et al.  Moving least‐squares particle hydrodynamics II: conservation and boundaries , 2000 .

[11]  J. Ross Macdonald,et al.  Some Simple Isothermal Equations of State , 1966 .

[12]  S. Ergun Fluid flow through packed columns , 1952 .

[13]  S. Attaway,et al.  Smoothed particle hydrodynamics stability analysis , 1995 .

[14]  Seiichi Koshizuka,et al.  Numerical Simulation of Three-Dimensional Free-Surface Flows with Explicit Moving Particle Simulation Method , 2011 .

[15]  J. Monaghan,et al.  Implicit SPH Drag and Dusty Gas Dynamics , 1997 .

[16]  Guirong Liu,et al.  Smoothed Particle Hydrodynamics: A Meshfree Particle Method , 2003 .

[17]  San-Yih Lin,et al.  A pressure correction-volume of fluid method for simulations of fluid–particle interaction and impact problems , 2013 .

[18]  Ashkan Rafiee,et al.  A simple SPH algorithm for multi‐fluid flow with high density ratios , 2013 .

[19]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[20]  Takahiro Harada,et al.  Smoothed particle hydrodynamics in complex shapes , 2007, SCCG.

[21]  Seiichi Koshizuka,et al.  Lagrangian–Lagrangian modeling for a solid–liquid flow in a cylindrical tank , 2012 .

[22]  Renyang He,et al.  Numerical simulation of predicting and reducing solid particle erosion of solid-liquid two-phase flow in a choke , 2009 .

[23]  Seiichi Koshizuka,et al.  Large-scale discrete element modeling in pneumatic conveying , 2009 .

[24]  J. Monaghan,et al.  Solitary Waves on a Cretan Beach , 1999 .

[25]  Daniel J. Price Smoothed particle hydrodynamics and magnetohydrodynamics , 2010, J. Comput. Phys..

[26]  Yoshiaki Oka,et al.  Hamiltonian moving-particle semi-implicit (HMPS) method for incompressible fluid flows , 2007 .

[27]  Clausius Inequality Part IV , 1948, Hydrobiologia.

[28]  D. Graham,et al.  Comparison of incompressible and weakly-compressible SPH models for free-surface water flows , 2010 .

[29]  Paul W. Cleary,et al.  Using SPH one-way coupled to DEM to model wet industrial banana screens , 2011 .

[30]  Hitoshi Gotoh,et al.  Key issues in the particle method for computation of wave breaking , 2006 .

[31]  P. Morrison,et al.  Hamiltonian description of the ideal fluid , 1998 .

[32]  Sivakumar Kulasegaram,et al.  Correction and stabilization of smooth particle hydrodynamics methods with applications in metal forming simulations , 2000 .

[33]  Paul W. Cleary,et al.  Flow modelling in casting processes , 2002 .

[34]  Edmond Y.M. Lo,et al.  Simulation of near-shore solitary wave mechanics by an incompressible SPH method , 2002 .

[35]  A. Colagrossi,et al.  Numerical simulation of interfacial flows by smoothed particle hydrodynamics , 2003 .

[36]  Rui Xu,et al.  Comparisons of weakly compressible and truly incompressible algorithms for the SPH mesh free particle method , 2008, J. Comput. Phys..

[37]  Joseph J Monaghan,et al.  An introduction to SPH , 1987 .

[38]  Damien Violeau,et al.  Numerical modelling of boom and oil spill with SPH , 2007 .

[39]  Hui-Ping Wang,et al.  A Lagrangian reproducing kernel particle method for metal forming analysis , 1998 .

[40]  Andrea Colagrossi,et al.  A simple procedure to improve the pressure evaluation in hydrodynamic context using the SPH , 2009, Comput. Phys. Commun..

[41]  C. W. Hirt,et al.  Volume of fluid (VOF) method for the dynamics of free boundaries , 1981 .

[42]  D. Gidaspow Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions , 1994 .

[43]  H. Makse,et al.  A phase diagram for jammed matter , 2008, Nature.

[44]  Zhi Zong,et al.  Smoothed particle hydrodynamics for numerical simulation of underwater explosion , 2003 .

[45]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[46]  J. Monaghan SPH without a Tensile Instability , 2000 .

[47]  Jinyang Zheng,et al.  A multi-scale flow analysis in hydrogen separation membranes using a coupled DSMC-SPH method , 2012 .

[48]  David Le Touzé,et al.  An Hamiltonian interface SPH formulation for multi-fluid and free surface flows , 2009, J. Comput. Phys..

[49]  J. Monaghan SPH compressible turbulence , 2002, astro-ph/0204118.

[50]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[51]  Daniel J. Price Modelling discontinuities and Kelvin-Helmholtz instabilities in SPH , 2007, J. Comput. Phys..

[52]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[53]  J. Monaghan On the problem of penetration in particle methods , 1989 .

[54]  S. Koshizuka,et al.  Moving-Particle Semi-Implicit Method for Fragmentation of Incompressible Fluid , 1996 .

[55]  Daniel J. Price Smoothed Particle Hydrodynamics: Things I wish my mother taught me , 2011, 1111.1259.

[56]  J. Bonet,et al.  Variational and momentum preservation aspects of Smooth Particle Hydrodynamic formulations , 1999 .

[57]  S. Koshizuka,et al.  International Journal for Numerical Methods in Fluids Numerical Analysis of Breaking Waves Using the Moving Particle Semi-implicit Method , 2022 .

[58]  M. Sommerfeld,et al.  Multiphase Flows with Droplets and Particles , 2011 .

[59]  Seiichi Koshizuka,et al.  Large‐scale discrete element modeling in a fluidized bed , 2010 .

[60]  Seiichi Koshizuka,et al.  Numerical analysis of shipping water impact on a deck using a particle method , 2007 .

[61]  C. K. Thornhill,et al.  Part IV. An experimental study of the collapse of liquid columns on a rigid horizontal plane , 1952, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[62]  D. Violeaua,et al.  Numerical Modelling of Boom and Oil Spill with SPH , 2013 .

[63]  G. Dilts MOVING-LEAST-SQUARES-PARTICLE HYDRODYNAMICS-I. CONSISTENCY AND STABILITY , 1999 .

[64]  Fermín Navarrina,et al.  On the Galerkin formulation of the smoothed particle hydrodynamics method , 2004 .

[65]  Paul W. Cleary,et al.  3D SPH flow predictions and validation for high pressure die casting of automotive components , 2006 .

[66]  Robert A. Dalrymple,et al.  Green water overtopping analyzed with a SPH model , 2005 .

[67]  Javier Bonet,et al.  Hamiltonian formulation of the variable-h SPH equations , 2005 .

[68]  Damien Violeau,et al.  Numerical modelling of complex turbulent free‐surface flows with the SPH method: an overview , 2007 .

[69]  Jakob Andreas Bærentzen,et al.  3D distance fields: a survey of techniques and applications , 2006, IEEE Transactions on Visualization and Computer Graphics.

[70]  Christopher C. Pain,et al.  Study on a large-scale discrete element model for fine particles in a fluidized bed , 2012 .

[71]  J. Monaghan,et al.  A refined particle method for astrophysical problems , 1985 .

[72]  Junya Kano,et al.  Ball mill simulation in wet grinding using a tumbling mill and its correlation to grinding rate , 2004 .

[73]  Wei Ge,et al.  SPH method for two-fluid modeling of particle–fluid fluidization , 2011 .

[74]  Mikio Sakai,et al.  Numerical modeling on the discharged fluid flow from a glass melter by a Lagrangian approach , 2012 .

[75]  D. Violeau,et al.  Dissipative forces for Lagrangian models in computational fluid dynamics and application to smoothed-particle hydrodynamics. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[76]  Bertrand Alessandrini,et al.  An improved SPH method: Towards higher order convergence , 2007, J. Comput. Phys..

[77]  P. Cundall,et al.  A discrete numerical model for granular assemblies , 1979 .

[78]  Benedict D. Rogers,et al.  SPHysics - development of a free-surface fluid solver - Part 1: Theory and formulations , 2012, Comput. Geosci..

[79]  L. Libersky,et al.  Smoothed Particle Hydrodynamics: Some recent improvements and applications , 1996 .

[80]  Salvatore Marrone,et al.  Fast free-surface detection and level-set function definition in SPH solvers , 2010, J. Comput. Phys..

[81]  John A. Herbst,et al.  Alternative ways of coupling particle behaviour with fluid dynamics in mineral processing , 2009 .

[82]  Yuuki Johno,et al.  Numerical simulation of air and particle motions in bubbling fluidized bed of small particles , 2000 .

[83]  Carl Eckart,et al.  Variation Principles of Hydrodynamics , 1960 .

[84]  J. Monaghan,et al.  SPH simulation of multi-phase flow , 1995 .

[85]  Seiichi Koshizuka,et al.  Effect of Nuclear Fuel Particle Movement on Nuclear Criticality in a Rotating Cylindrical Vessel , 2005 .

[86]  Nikolaus A. Adams,et al.  An incompressible multi-phase SPH method , 2007, J. Comput. Phys..