A molecular shuttle for driving a multilevel fluorescence switch.

A [2]rotaxane-based molecular shuttle comprised a macrocycle mechanically interlocked to a chemical "dumbbell" has been prepared in high yields by a thermodynamically controlled, template-induced clipping procedure. This molecular shuttle has two different recognition sites, namely, -NH2 +- and amide, separated by a phenyl unit. The macrocycle exhibits high selectivity for the -NH2+- recognition sites in the protonated form through noncovalent interactions, which include 1) N+-H...O hydrogen bonds; 2) C-H...O interactions between the CH2NH2+CH2 protons on the thread and the oligo(ethylene glycol) unit in the macrocycle; 3) pi...pi stacking interaction between macrocycle and aromatic unit. Upon deprotonation of the [2]rotaxane the macrocycle glides to the amide recognition site due to the hydrogen bonds between the -CONH- group and the oligo(ethylene glycol) unit in the macrocycle. The deprotonation process requires about 10 equivalents of base (iPr2NEt) in polar acetone, while the amount of base is only 1.2 equivalents in apolar tetrachloroethane. Upon addition of Li+, the conformation of the [2]rotaxane was altered as a result of the collective interactions of 1) hydrogen bonds between pyridine nitrogen and amide hydrogen atoms; 2) coordination between the oligo(ethylene glycol) unit, amide oxygen atom and Li+ cation. Then, when Zn2+ ions are added, the macrocycle returns to the deprotonated -NH- recognition site owing to coordination of the macrocycle and -NH- from the axle with the Zn2+ ion. All the above-mentioned movement processes are reversible through the alternate addition of TFA/iPr2NEt, Li/[12]-crown-4 and Zn2+/ethylenediaminetetraacetate (EDTA), by virtue of hydrogen bonding and metal-ion complexation. Significantly, the three independent movement processes are all accompanied by fluorescent responses: 1) complete repression in the protonated form; 2) low-level expression in the deprotonated form; 3) medium-level expression following addition of Li+; 4) high-level expression on complexation with Zn2+.

[1]  Vincenzo Balzani,et al.  Electrochemically and Photochemically Driven Ring Motions in a Disymmetrical Copper [2]-Catenate. , 1997, Journal of the American Chemical Society.

[2]  J F Stoddart,et al.  Molecular-based electronically switchable tunnel junction devices. , 2001, Journal of the American Chemical Society.

[3]  Francesco Zerbetto,et al.  Unidirectional rotation in a mechanically interlocked molecular rotor , 2003, Nature.

[4]  Hsian-Rong Tseng,et al.  Toward chemically controlled nanoscale molecular machinery. , 2003, Angewandte Chemie.

[5]  Toshiaki Tamamura,et al.  Self-organized growth of strained InGaAs quantum disks , 1994, Nature.

[6]  Vincenzo Balzani,et al.  A mechanically interlocked bundle. , 2004, Chemistry.

[7]  David A. Leigh,et al.  Peptide-Based Molecular Shuttles , 1997 .

[8]  J. F. Stoddart,et al.  Kinetic versus thermodynamic control during the formation of [2]rotaxanes by a dynamic template-directed clipping process. , 2003, Chemistry.

[9]  Jean-Pierre Sauvage,et al.  Towards artificial muscles at the nanometric level. , 2003, Chemical communications.

[10]  T. Takata,et al.  Unusually Lowered Acidity of Ammonium Group Surrounded by Crown Ether in a Rotaxane System and Its Acylative Neutralization , 2000 .

[11]  J. F. Stoddart,et al.  The role of physical environment on molecular electromechanical switching. , 2004, Chemistry.

[12]  Andrew J. P. White,et al.  Template‐Directed Synthesis of a [2]Rotaxane by the Clipping under Thermodynamic Control of a Crown Ether Like Macrocycle Around a Dialkylammonium Ion , 2001 .

[13]  I. V. van Stokkum,et al.  Enhanced hydrogen bonding induced by optical excitation: unexpected subnanosecond photoinduced dynamics in a peptide-based [2]rotaxane. , 2001, Journal of the American Chemical Society.

[14]  David J. Williams,et al.  Acid−Base Controllable Molecular Shuttles† , 1998 .

[15]  Vincenzo Balzani,et al.  Controllable donor-acceptor neutral [2]rotaxanes. , 2004, Chemistry.

[16]  M. Prato,et al.  Reverse shuttling in a fullerene-stoppered rotaxane. , 2006, Organic letters.

[17]  Stoddart,et al.  Artificial Molecular Machines. , 2000, Angewandte Chemie.

[18]  M. Prato,et al.  Tuning electron transfer through translational motion in molecular shuttles. , 2007, Angewandte Chemie.

[19]  M. Prato,et al.  An electrochemically driven molecular shuttle controlled and monitored by C60. , 2007, Chemical communications.

[20]  T. Swager,et al.  Intramolecular photoinduced charge transfer in rotaxanes. , 2005, Journal of the American Chemical Society.

[21]  Nobuhiro Kihara,et al.  Redox behavior of ferrocene-containing rotaxane: transposition of the rotaxane wheel by redox reaction of a ferrocene moiety tethered at the end of the axle. , 2004, Organic letters.

[22]  Jean-Pierre Sauvage,et al.  Topological kinetic effects: complexation of interlocked macrocyclic ligands by cationic species , 1988 .

[23]  D. Leigh,et al.  Switchable dual binding mode molecular shuttle. , 2006, Organic letters.

[24]  Francesco Zerbetto,et al.  Remarkable positional discrimination in bistable light- and heat-switchable hydrogen-bonded molecular shuttles. , 2003, Angewandte Chemie.

[25]  Jeremy K M Sanders,et al.  Lithium-templated synthesis of a donor-acceptor pseudorotaxane and catenane. , 2004, Angewandte Chemie.

[26]  Vincenzo Balzani,et al.  Operating molecular elevators. , 2006, Journal of the American Chemical Society.

[27]  Francesco Zerbetto,et al.  Switching "on" and "off" the expression of chirality in peptide rotaxanes. , 2002, Journal of the American Chemical Society.

[28]  Francesco Zerbetto,et al.  Entropy-driven translational isomerism: a tristable molecular shuttle. , 2003, Angewandte Chemie.

[29]  Francesco Zerbetto,et al.  Patterning through controlled submolecular motion: rotaxane-based switches and logic gates that function in solution and polymer films. , 2005, Angewandte Chemie.

[30]  Chih-Ming Ho,et al.  Linear artificial molecular muscles. , 2005, Journal of the American Chemical Society.

[31]  Robert H. Grubbs,et al.  High‐Yield Synthesis of [2] Catenanes by Intramolecular Ring‐Closing Metathesis , 1997 .

[32]  T. Takata,et al.  Is the tert-butyl group bulky enough to end-cap a pseudorotaxane with a 24-crown-8-ether wheel? , 2004, Organic letters.

[33]  He Tian,et al.  A light-driven rotaxane molecular shuttle with dual fluorescence addresses. , 2004, Organic letters.

[34]  Vincenzo Balzani,et al.  A Chemically and Electrochemically Switchable [2]Catenane Incorporating a Tetrathiafulvalene Unit. , 1998, Angewandte Chemie.

[35]  M. Jiménez,et al.  Towards Synthetic Molecular Muscles: Contraction and Stretching of a Linear Rotaxane Dimer , 2000 .

[36]  Jean-Pierre Sauvage,et al.  A fast-moving [2]rotaxane whose stoppers are remote from the copper complex core. , 2005, Organic letters.

[37]  Frank Baumann,et al.  Changeover in a multimodal copper(ii) catenate as monitored by EPRspectroscopy , 1997 .

[38]  J. Fraser Stoddart,et al.  A Molecular Elevator , 2004, Science.

[39]  Tohru Yamamoto,et al.  Two-dimensional molecular electronics circuits. , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.

[40]  J. Fraser Stoddart,et al.  Selbstaufbau eines schaltbaren [2]Rotaxans , 1997 .

[41]  Jean-Pierre Sauvage,et al.  Synthesis and electrochemical studies of catenates: stabilization of low oxidation states by interlocked macrocyclic ligands , 1989 .

[42]  Jean-Pierre Sauvage,et al.  Redox Control of the Ring-Gliding Motion in a Cu-Complexed Catenane: A Process Involving Three Distinct Geometries , 1996 .

[43]  Hsian-Rong Tseng,et al.  A reversible molecular valve. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Bernhard Mohr,et al.  Effiziente Synthese von [2]‐Catenanen durch intramolekulare Olefinmetathese , 1997 .

[45]  J. F. Stoddart,et al.  Template-directed synthesis of multiply mechanically interlocked molecules under thermodynamic control. , 2005, Chemistry.

[46]  Francesco Zerbetto,et al.  Synthetic molecular motors and mechanical machines. , 2007, Angewandte Chemie.

[47]  N. Seeman,et al.  A precisely controlled DNA biped walking device , 2004 .

[48]  A. P. de Silva,et al.  Communicating chemical congregation: a molecular AND logic gate with three chemical inputs as a "lab-on-a-molecule" prototype. , 2006, Journal of the American Chemical Society.

[49]  David A. Leigh,et al.  “Smart” Rotaxanes: Shape Memory and Control in Tertiary Amide Peptido[2]rotaxanes , 1999 .

[50]  Euan R Kay,et al.  Beyond switches: ratcheting a particle energetically uphill with a compartmentalized molecular machine. , 2006, Journal of the American Chemical Society.

[51]  Ning Wang,et al.  Energy transfer switching in a bistable molecular machine. , 2005, Organic letters.

[52]  David J. Williams,et al.  Ein chemisch und elektrochemisch schaltbares [2]Catenan mit Tetrathiafulvalen‐Einheit , 1998 .

[53]  Terence E. Rice,et al.  Signaling Recognition Events with Fluorescent Sensors and Switches. , 1997, Chemical reviews.

[54]  Vincenzo Balzani,et al.  Molecular Devices and Machines– A Journey into the Nano World , 2003 .

[55]  N. Pierce,et al.  A synthetic DNA walker for molecular transport. , 2004, Journal of the American Chemical Society.

[56]  David A Leigh,et al.  Chiroptical switching in a bistable molecular shuttle. , 2003, Journal of the American Chemical Society.

[57]  Hsian-Rong Tseng,et al.  Switchable neutral bistable rotaxanes. , 2004, Journal of the American Chemical Society.

[58]  A. P. Silva,et al.  Molecular Photoionic AND Logic Gates with Bright Fluorescence and “Off−On” Digital Action , 1997 .

[59]  J. Fraser Stoddart,et al.  Künstliche molekulare Maschinen , 2000 .

[60]  Jean-Pierre Sauvage,et al.  Topological enhancement of basicity: molecular structure and solution study of a monoprotonated catenand , 1986 .

[61]  Jean-Pierre Sauvage,et al.  Templated synthesis of interlocked macrocyclic ligands: the catenands , 1984 .

[62]  J. F. Stoddart,et al.  A chemically and electrochemically switchable molecular shuttle , 1994, Nature.

[63]  James R Heath,et al.  Whence Molecular Electronics? , 2004, Science.

[64]  Euan R. Kay,et al.  Synthetische molekulare Motoren und mechanische Maschinen , 2007 .

[65]  J Fraser Stoddart,et al.  A molecular shuttle. , 1991, Journal of the American Chemical Society.

[66]  Terence E. Rice,et al.  Integration of Logic Functions and Sequential Operation of Gates at the Molecular-Scale , 1999 .

[67]  Jean-Pierre Sauvage,et al.  Electrochemically Triggered Swinging of a [2]-Catenate. , 1994, Journal of the American Chemical Society.

[68]  Euan R. Kay,et al.  A Reversible Synthetic Rotary Molecular Motor , 2004, Science.

[69]  J. Fraser Stoddart,et al.  The Self‐Assembly of a Switchable [2]Rotaxane , 1997 .

[70]  J F Stoddart,et al.  Dual-mode "co-conformational" switching in catenanes incorporating bipyridinium and dialkylammonium recognition sites. , 2001, Chemistry.

[71]  Francesco Zerbetto,et al.  A generic basis for some simple light-operated mechanical molecular machines. , 2004, Journal of the American Chemical Society.

[72]  Pablo Gaviña,et al.  Rotaxanes Incorporating Two Different Coordinating Units in Their Thread: Synthesis and Electrochemically and Photochemically Induced Molecular Motions , 1999 .

[73]  Xiang Zhang,et al.  The metastability of an electrochemically controlled nanoscale machine on gold surfaces. , 2004, Chemphyschem : a European journal of chemical physics and physical chemistry.

[74]  Jean-Pierre Sauvage,et al.  Molecular structure of a catenand and its copper(I) catenate: complete rearrangement of the interlocked macrocyclic ligands by complexation , 1985 .

[75]  Jean-Pierre Sauvage,et al.  Chemically induced contraction and stretching of a linear rotaxane dimer. , 2002, Chemistry.

[76]  He Tian,et al.  A Lockable Light‐Driven Molecular Shuttle with a Fluorescent Signal , 2004 .