Ion–Electron Coupling Enables Ionic Thermoelectric Material with New Operation Mode and High Energy Density

[1]  Meng Li,et al.  Role of Ions in Hydrogels with an Ionic Seebeck Coefficient of 52.9 mV K-1. , 2022, The journal of physical chemistry letters.

[2]  Yongxin Qin,et al.  High thermoelectric performance realized through manipulating layered phonon-electron decoupling , 2022, Science.

[3]  Baoling Huang,et al.  Selectively tuning ionic thermopower in all-solid-state flexible polymer composites for thermal sensing , 2022, Nature communications.

[4]  J. Jeon,et al.  Self‐Healable Organic–Inorganic Hybrid Thermoelectric Materials with Excellent Ionic Thermoelectric Properties , 2021, Advanced Energy Materials.

[5]  N. Fang,et al.  Ion Regulation in Double-Network Hydrogel Module with Ultrahigh Thermopower for Low-grade Heat Harvesting , 2021, Nano Energy.

[6]  Yonggang Yao,et al.  Lightweight, strong, moldable wood via cell wall engineering as a sustainable structural material , 2021, Science.

[7]  Chunsheng Wang,et al.  Copper-coordinated cellulose ion conductors for solid-state batteries , 2021, Nature.

[8]  X. Tao,et al.  Wearable self-powered human motion sensors based on highly stretchable quasi-solid state hydrogel , 2021, Nano Energy.

[9]  Yufan Zhang,et al.  Colossal thermo-hydro-electrochemical voltage generation for self-sustainable operation of electronics , 2021, Nature Communications.

[10]  X. Crispin,et al.  Unconventional Thermoelectric Materials for Energy Harvesting and Sensing Applications. , 2021, Chemical reviews.

[11]  Liangbing Hu,et al.  Scalable Wood Hydrogel Membrane with Nanoscale Channels. , 2021, ACS nano.

[12]  J. Ouyang,et al.  A mixed ion-electron conducting carbon nanotube ionogel to efficiently harvest heat from both a temperature gradient and temperature fluctuation , 2021 .

[13]  Md. Zahidul Islam,et al.  Embedding Aligned Graphene Oxides in Polyelectrolytes to Facilitate Thermo‐Diffusion of Protons for High Ionic Thermoelectric Figure‐of‐Merit , 2021, Advanced Functional Materials.

[14]  S. Fabiano,et al.  Mixed Ionic-Electronic Transport in Polymers , 2021 .

[15]  K. Sun,et al.  Cation effect of inorganic salts on ionic Seebeck coefficient , 2021 .

[16]  Liangbing Hu,et al.  Alignment of Cellulose Nanofibers: Harnessing Nanoscale Properties to Macroscale Benefits. , 2021, ACS nano.

[17]  Xun Shi,et al.  Thermopower and harvesting heat , 2021, Science.

[18]  Gang Chen,et al.  Ionic thermoelectric materials for near ambient temperature energy harvesting , 2021 .

[19]  J. Ding,et al.  Bioinspired Fractal Design of Waste Biomass‐Derived Solar–Thermal Materials for Highly Efficient Solar Evaporation , 2020, Advanced Functional Materials.

[20]  Lei Zhang,et al.  Stretchable and Transparent Ionogels with High Thermoelectric Properties , 2020, Advanced Functional Materials.

[21]  J. Jeon,et al.  Intrinsically self-healable, stretchable thermoelectric materials with a large ionic Seebeck effect , 2020 .

[22]  X. Crispin,et al.  High Thermoelectric Performance in n‐Type Perylene Bisimide Induced by the Soret Effect , 2020, Advanced materials.

[23]  Zhong Lin Wang,et al.  Thermosensitive crystallization–boosted liquid thermocells for low-grade heat harvesting , 2020, Science.

[24]  J. Ouyang,et al.  Ultrahigh Thermoelectric Power Generation from Both Ion Diffusion by Temperature Fluctuation and Hole Accumulation by Temperature Gradient , 2020, Advanced Energy Materials.

[25]  J. Ouyang,et al.  Quasi-solid state nanoparticle/(ionic liquid) gels with significantly high ionic thermoelectric properties , 2020 .

[26]  Gang Chen,et al.  Giant thermopower of ionic gelatin near room temperature , 2020, Science.

[27]  Eunkyoung Kim,et al.  Chloride transport in conductive polymer films for an n-type thermoelectric platform , 2020, Energy & Environmental Science.

[28]  D. Lovley,et al.  Power generation from ambient humidity using protein nanowires , 2020, Nature.

[29]  J. Ouyang,et al.  Flexible Quasi‐Solid State Ionogels with Remarkable Seebeck Coefficient and High Thermoelectric Properties , 2019, Advanced Energy Materials.

[30]  Jianwei Song,et al.  Cellulose ionic conductors with high differential thermal voltage for low-grade heat harvesting , 2019, Nature Materials.

[31]  Andreas Willfahrt,et al.  Polymer gels with tunable ionic Seebeck coefficient for ultra-sensitive printed thermopiles , 2019, Nature Communications.

[32]  Peihua Yang,et al.  Aqueous thermogalvanic cells with a high Seebeck coefficient for low-grade heat harvest , 2018, Nature Communications.

[33]  Lan Jiang,et al.  Spontaneous power source in ambient air of a well-directionally reduced graphene oxide bulk , 2018 .

[34]  M. Li,et al.  Enhancement of Conductivity and Thermoelectric Property of PEDOT:PSS via Acid Doping and Single Post‐Treatment for Flexible Power Generator , 2018, Advanced Sustainable Systems.

[35]  B. Freeman,et al.  Ion Diffusion Coefficients in Ion Exchange Membranes: Significance of Counterion Condensation , 2018, Macromolecules.

[36]  V. Ganesan,et al.  Reversal of Salt Concentration Dependencies of Salt and Water Diffusivities in Polymer Electrolyte Membranes. , 2018, ACS macro letters.

[37]  K. Sun,et al.  Recent Development of Thermoelectric Polymers and Composites. , 2018, Macromolecular rapid communications.

[38]  J. Hsu,et al.  Thermoelectric effects in solid-state polyelectrolytes , 2018 .

[39]  Jun Zhou,et al.  Water-evaporation-induced electricity with nanostructured carbon materials. , 2017, Nature nanotechnology.

[40]  Rachel A. Segalman,et al.  Organic thermoelectric materials for energy harvesting and temperature control , 2016, Nature Reviews Materials.

[41]  D. Schaniel,et al.  Structural analysis and IR-spectroscopy of a new anilinium hydrogenselenite hybrid compound: A subtle structural phase transition , 2016 .

[42]  X. Crispin,et al.  Ionic thermoelectric supercapacitors , 2016 .

[43]  Huan Liu,et al.  Facile synthesis of high performance hard carbon anode materials for sodium ion batteries , 2015 .

[44]  X. Crispin,et al.  Ionic Seebeck Effect in Conducting Polymers , 2015 .

[45]  J. Simonsen,et al.  Carbon nanofibers derived from cellulose nanofibers as a long-life anode material for rechargeable sodium-ion batteries , 2013 .

[46]  M. Bonetti,et al.  Huge Seebeck coefficients in nonaqueous electrolytes. , 2011, The Journal of chemical physics.

[47]  L. Bell Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems , 2008, Science.

[48]  Q. Ouyang,et al.  Asymmetric properties of ion transport in a charged conical nanopore. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  Weishu Liu,et al.  3D Hierarchical Electrodes Boosting Ultrahigh Power Output for Gelatin‐KCl‐FeCN4−/3− Ionic Thermoelectric Cells , 2022 .

[50]  Meng Li,et al.  Solvent effect on the Seebeck coefficient of Fe2+/Fe3+ hydrogel thermogalvanic cells , 2022, Journal of Materials Chemistry A.

[51]  Cheol Hyun Cho,et al.  Bisulfate Transport in Hydrogels for Self-healable and Transparent Thermoelectric Harvesting Film , 2022, Energy & Environmental Science.