Nonlinear missile autopilot design using time-scale separation

Time-Scale separation helps improve the robustness of feedback linearized autopilots by simplifying the feedback linearization maps, and by permitting the design of low-order controllers. This paper presents the development of three distinct timescale separation schemes for the design of feedback linearized missile autopilots. A six degrees-of-freedom missile model is used in this work. The performance of these autopilots are compared with the design that does not use time-scale separation. Simulation results illustrating controller tracking performance and robustness are presented.

[1]  Riccardo Marino,et al.  Nonlinear control design , 1995 .

[2]  Gary J. Balas,et al.  Design of a flight control system for a highly maneuverable aircraft using robust dynamic inversion , 1994 .

[3]  R. T. Reichert Dynamic scheduling of modern-robust-control autopilot designs for missiles , 1992 .

[4]  P. K. Menon,et al.  Nonlinear flight control using embedded vehicle computer model , 1995 .

[5]  Robert F. Stengel,et al.  Flight Control Design using Nonlinear Inverse Dynamics , 1986, 1986 American Control Conference.

[6]  Michael Athans,et al.  Gain-Scheduled Multivariable Control for the GE-21 Turbofan Engine using the LQG/LTR Methodology , 1985, 1985 American Control Conference.

[7]  R. Walker,et al.  Nonlinear flight test trajectory controllers for aircraft , 1987 .

[8]  Dale F. Enns,et al.  Nonlinear control law with application to high angle-of-attack flight , 1992 .

[9]  V. Cheng,et al.  Practical design methodologies for robust nonlinear flight control , 1996 .

[10]  J. Karl Hedrick,et al.  Nonlinear flight control design via sliding methods , 1990 .

[11]  Harold Stalford,et al.  Mu-synthesis autopilot design for a flexible missile , 1991 .

[12]  A. Isidori Nonlinear Control Systems: An Introduction , 1986 .

[13]  Sanjay Garg A Simplified Scheme for Scheduling Multivariable Controllers and its Application to a Turbofan Engine , 1996 .

[14]  Jeff S. Shamma,et al.  Gain-Scheduled Missile Autopilot Design Using Linear Parameter Varying Transformations , 1993 .

[15]  John H. Blakelock,et al.  Automatic control of aircraft and missiles , 1965 .

[16]  G. Meyer,et al.  Application of Nonlinear Systems Inverses to Automatic Flight Control Design: System Concepts and Flight Evaluations , 1981 .

[17]  Christopher D'Souza,et al.  Missile flight control with dynamic inversion and structured singular value synthesis , 1994 .

[18]  Paul Van Dooren Control system toolbox: A. Grace, A. Laub, J. Little and C. Thompson , 1994, Autom..

[19]  P. K. A. Menon Synthesis of Robust Nonlinear Autopilots Using Differential Game Theory , 1991, 1991 American Control Conference.

[20]  Robert F. Stengel,et al.  Optimal Control and Estimation , 1994 .

[21]  M. Safonov,et al.  Simplifying the H∞ theory via loop-shifting, matrix-pencil and descriptor concepts , 1989 .

[22]  M Yousefpor,et al.  Design of Nonlinear Autopilots for High Angle of Attack Missiles , 1996 .

[23]  Roger W. Brockett,et al.  Feedback Invariants for Nonlinear Systems , 1978 .

[24]  Richard Y. Chiang,et al.  Robust control toolbox , 1996 .

[25]  P. K. Menon,et al.  Towards an advanced nonlinear rotorcraft flight control system design , 1994, AIAA/IEEE Digital Avionics Systems Conference. 13th DASC.

[26]  Aaron J. Ostroff High-alpha application of variable-gain output feedback control , 1992 .

[27]  Bernard Etkin,et al.  Dynamics of Atmospheric Flight , 1972 .

[28]  Richard Adams,et al.  Robust Multivariable Flight Control , 1994 .

[29]  R. Menon,et al.  Nonlinear command augmentation system for a high performance aircraft , 1993 .

[30]  Ernest J. Ohlmeyer Root-mean-square miss distance of proportional navigation missile against sinusoidal target , 1996 .