Global-in-time mean-field convergence for singular Riesz-type diffusive flows

We consider the mean-field limit of systems of particles with singular interactions of the type − log |x| or |x|, with 0 < s < d − 2, and with an additive noise in dimensions d ≥ 3. We use a modulated-energy approach to prove a quantitative convergence rate to the solution of the corresponding limiting PDE. When s > 0, the convergence is global in time, and it is the first such result valid for both conservative and gradient flows in a singular setting on R. The proof relies on an adaptation of an argument of Carlen-Loss [CL95] to show a decay rate of the solution to the limiting equation, and on an improvement of the modulated-energy method developed in [Due16, Ser20, NRS21], making it so that all prefactors in the time derivative of the modulated energy are controlled by a decaying bound on the limiting solution.

[1]  Rainer Hegselmann,et al.  Opinion dynamics and bounded confidence: models, analysis and simulation , 2002, J. Artif. Soc. Soc. Simul..

[2]  Mario Pulvirenti,et al.  Mathematical Theory of Incompressible Nonviscous Fluids , 1993 .

[3]  E. Carlen,et al.  Optimal smoothing and decay estimates for viscously damped conservation laws, with applications to the $2$-D Navier-Stokes equation , 1995 .

[4]  Rongchan Zhu,et al.  Gaussian Fluctuations for Interacting Particle Systems with Singular Kernels , 2021, Archive for Rational Mechanics and Analysis.

[5]  Pierre-Emmanuel Jabin,et al.  A review of the mean field limits for Vlasov equations , 2014 .

[6]  J. Nash Continuity of Solutions of Parabolic and Elliptic Equations , 1958 .

[7]  U. Krause A DISCRETE NONLINEAR AND NON–AUTONOMOUS MODEL OF CONSENSUS FORMATION , 2007 .

[8]  D. Bresch,et al.  Modulated free energy and mean field limit , 2019, Séminaire Laurent Schwartz — EDP et applications.

[9]  A. Chorin Numerical study of slightly viscous flow , 1973, Journal of Fluid Mechanics.

[10]  Mean field limit for Coulomb-type flows , 2018, 1803.08345.

[11]  E. Carlen,et al.  Extremals of functionals with competing symmetries , 1990 .

[12]  S. Méléard Asymptotic behaviour of some interacting particle systems; McKean-Vlasov and Boltzmann models , 1996 .

[13]  D. Bresch,et al.  On mean-field limits and quantitative estimates with a large class of singular kernels: Application to the Patlak–Keller–Segel model , 2019, Comptes Rendus Mathematique.

[14]  P. Cattiaux,et al.  Probabilistic approach for granular media equations in the non-uniformly convex case , 2006, math/0603541.

[15]  S. Serfaty Mean Field Limits of the Gross-Pitaevskii and Parabolic Ginzburg-Landau Equations , 2015, 1507.03821.

[16]  B. Perthame Transport Equations in Biology , 2006 .

[17]  Magnus Önnheim,et al.  Propagation of Chaos for a Class of First Order Models with Singular Mean Field Interactions , 2016, SIAM J. Math. Anal..

[18]  P. Jabin,et al.  Quantitative estimates of propagation of chaos for stochastic systems with kernels , 2017 .

[19]  S. Serfaty,et al.  Higher‐Dimensional Coulomb Gases and Renormalized Energy Functionals , 2013, 1307.2805.

[20]  F. Golse On the Dynamics of Large Particle Systems in the Mean Field Limit , 2013, 1301.5494.

[21]  Franccois Delarue,et al.  Uniform in time weak propagation of chaos on the torus , 2021, 2104.14973.

[22]  Cristobal Quininao,et al.  Propagation of chaos for a sub-critical Keller-Segel model , 2013, 1306.3831.

[23]  A. Bertozzi,et al.  A Nonlocal Continuum Model for Biological Aggregation , 2005, Bulletin of mathematical biology.

[24]  Haoxiang Xia,et al.  Opinion Dynamics: A Multidisciplinary Review and Perspective on Future Research , 2011, Int. J. Knowl. Syst. Sci..

[25]  Andrea Montanari,et al.  A mean field view of the landscape of two-layer neural networks , 2018, Proceedings of the National Academy of Sciences.

[26]  Hirofumi Osada,et al.  Propagation of chaos for the two dimensional Navier-Stokes equation , 1986 .

[27]  L. Grafakos Classical Fourier Analysis , 2010 .

[28]  A. Guillin,et al.  Trend to equilibrium and particle approximation for a weakly selfconsistent Vlasov-Fokker-Planck equation , 2009, 0906.1417.

[29]  Arnaud Guillin,et al.  Uniform in time propagation of chaos for the 2D vortex model and other singular stochastic systems , 2021, 2108.08675.

[30]  J. A. Carrillo,et al.  The derivation of swarming models: Mean-field limit and Wasserstein distances , 2013, 1304.5776.

[31]  Pierre-Emmanuel Jabin,et al.  Mean Field Limit and Propagation of Chaos for Vlasov Systems with Bounded Forces , 2015, 1511.03769.

[32]  Hans G. Othmer,et al.  Aggregation, Blowup, and Collapse: The ABC's of Taxis in Reinforced Random Walks , 1997, SIAM J. Appl. Math..

[33]  Jian-Guo Liu,et al.  On the mean field limit for Brownian particles with Coulomb interaction in 3D , 2018, Journal of Mathematical Physics.

[34]  B. Jourdain,et al.  Stochastic particle approximation of the Keller-Segel equation and two-dimensional generalization of Bessel processes , 2015, 1507.01087.

[35]  St'ephane Mischler,et al.  On Kac's chaos and related problems , 2014 .

[36]  Mitia Duerinckx,et al.  Mean-Field Limits for Some Riesz Interaction Gradient Flows , 2015, SIAM J. Math. Anal..

[37]  M. Ledoux,et al.  Logarithmic Sobolev Inequalities , 2014 .

[38]  Thomas Holding Propagation of chaos for Hölder continuous interaction kernels via Glivenko-Cantelli , 2016, 1608.02877.

[39]  F. Malrieu Convergence to equilibrium for granular media equations and their Euler schemes , 2003 .

[40]  J. Vázquez,et al.  A mean field equation as limit of nonlinear diffusions with fractional Laplacian operators , 2014 .

[41]  Eitan Tadmor,et al.  A New Model for Self-organized Dynamics and Its Flocking Behavior , 2011, 1102.5575.

[42]  Pierre-Emmanuel Jabin,et al.  Mean Field Limit for Stochastic Particle Systems , 2017 .

[43]  A. Sznitman Topics in propagation of chaos , 1991 .

[44]  M. Hauray WASSERSTEIN DISTANCES FOR VORTICES APPROXIMATION OF EULER-TYPE EQUATIONS , 2009 .

[45]  Jos'e Antonio Carrillo,et al.  Stochastic Mean-Field Limit: Non-Lipschitz Forces & Swarming , 2010, 1009.5166.

[46]  H. Osada Limit Points of Empirical Distributions of Vorticies with Small Viscosity , 1987 .

[47]  Global Stability of Vortex Solutions of the Two-Dimensional Navier-Stokes Equation , 2004, math/0402449.

[48]  Propagation of chaos for large Brownian particle system with Coulomb interaction , 2016 .

[49]  Grant M. Rotskoff,et al.  Trainability and Accuracy of Artificial Neural Networks: An Interacting Particle System Approach , 2018, Communications on Pure and Applied Mathematics.

[50]  Francis Bach,et al.  On the Global Convergence of Gradient Descent for Over-parameterized Models using Optimal Transport , 2018, NeurIPS.

[51]  Sylvia Serfaty,et al.  Mean-field limits of Riesz-type singular flows with possible multiplicative transport noise , 2021 .

[52]  Nicolas Fournier,et al.  Propagation of chaos for the 2D viscous vortex model , 2012, 1212.1437.

[53]  J. A. Carrillo,et al.  A mass-transportation approach to a one dimensional fluid mechanics model with nonlocal velocity , 2011, 1110.6513.

[54]  Alain Durmus,et al.  An elementary approach to uniform in time propagation of chaos , 2018, Proceedings of the American Mathematical Society.

[55]  E. Carlen Some integral identities and inequalities for entire functions and their application to the coherent state transform , 1991 .

[56]  D. Bresch,et al.  Mean field limit and quantitative estimates with singular attractive kernels , 2020, Duke Mathematical Journal.

[57]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[58]  E. Davies,et al.  EXPLICIT CONSTANTS FOR GAUSSIAN UPPER BOUNDS ON HEAT KERNELS , 1987 .

[59]  Daniel Lacker Hierarchies, entropy, and quantitative propagation of chaos for mean field diffusions , 2021 .

[60]  École d'été de probabilités de Saint-Flour,et al.  Ecole d'été de probabilités de Saint-Flour XIX, 1989 , 1991 .

[61]  M. Rosenzweig The Mean-Field Limit of Stochastic Point Vortex Systems with Multiplicative Noise , 2020, 2011.12180.

[62]  S. Mischler,et al.  A new approach to quantitative propagation of chaos for drift, diffusion and jump processes , 2011, 1101.4727.

[63]  A Lower Bound for Fundamental Solutions of the Heat Convection Equations , 2008 .

[64]  Xiongzhi Chen Brownian Motion and Stochastic Calculus , 2008 .

[65]  H. Osada Diffusion processes with generators of generalized divergence form , 1987 .