Connectivity of Quadratic Hypersurfaces and Its Applications in Optimization, Part I: General Theory
暂无分享,去创建一个
[1] K. Veselic,et al. Trace minimization and definiteness of symmetric pencils , 1995 .
[2] E. Feron. Nonconvex Quadratic Programming, Semidefinite Relaxations and Randomization Algorithms in Information and Decision Systems , 2000 .
[3] H. Wolkowicz,et al. Trust Region Problems and Nonsymmetric Eigenvalue Perturbations , 1994 .
[4] L. Brickman. ON THE FIELD OF VALUES OF A MATRIX , 1961 .
[5] Jean-Baptiste Hiriart-Urruty,et al. Potpourri of Conjectures and Open Questions in Nonlinear Analysis and Optimization , 2007, SIAM Rev..
[6] Yan Zi-zong,et al. Some Equivalent Results with Yakubovich's S-Lemma , 2010, SIAM J. Control. Optim..
[7] Über eine KlasseJ-selbstadjungierter Operatoren , 1964 .
[8] Xin Chen,et al. A note on quadratic forms , 1999, Math. Program..
[9] G. Stewart,et al. Matrix Perturbation Theory , 1990 .
[10] Dick den Hertog,et al. Hidden conic quadratic representation of some nonconvex quadratic optimization problems , 2014, Math. Program..
[11] Henry Wolkowicz,et al. The generalized trust region subproblem , 2014, Comput. Optim. Appl..
[12] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[13] Yik-Hoi Au-Yeung. On the semi-definiteness of the real pencil of two Hermitian matrices , 1975 .
[14] Samuel Burer,et al. The trust region subproblem with non-intersecting linear constraints , 2015, Math. Program..
[15] L. L. Dines. On the mapping of quadratic forms , 1941 .
[16] E. Calabi. Linear systems of real quadratic forms. II , 1964 .
[17] Laurent El Ghaoui,et al. Advances in linear matrix inequality methods in control: advances in design and control , 1999 .
[18] J. Stoer,et al. Convexity and Optimization in Finite Dimensions I , 1970 .
[19] Ronald I. Becker. Necessary and sufficient conditions for the simultaneous diagonability of two quadratic forms , 1980 .
[20] Arkadi Nemirovski,et al. Lectures on modern convex optimization - analysis, algorithms, and engineering applications , 2001, MPS-SIAM series on optimization.
[21] Stephen P. Boyd,et al. Linear Matrix Inequalities in Systems and Control Theory , 1994 .
[22] Chi-Kwong Li,et al. Joint Ranges of Hermitian Matrices and Simultaneous Diagonalization , 1991 .
[23] Amir Beck,et al. On the convexity of a class of quadratic mappings and its application to the problem of finding the smallest ball enclosing a given intersection of balls , 2007, J. Glob. Optim..
[24] C. Hamburger,et al. Two Extensions to Finsler's Recurring Theorem , 1999 .
[25] Paul Pinsler. Über das Vorkommen definiter und semidefiniter Formen in Scharen quadratischer Formen , 1936 .
[26] F. Uhlig. A recurring theorem about pairs of quadratic forms and extensions: a survey , 1979 .
[27] Ya-Xiang Yuan,et al. On a subproblem of trust region algorithms for constrained optimization , 1990, Math. Program..
[28] Tamás Terlaky,et al. A Survey of the S-Lemma , 2007, SIAM Rev..
[29] Henry Wolkowicz,et al. Indefinite Trust Region Subproblems and Nonsymmetric Eigenvalue Perturbations , 1995, SIAM J. Optim..
[30] M. Levin. Estimation of a system pulse transfer function in the presence of noise , 1964 .
[31] Henry Wolkowicz,et al. The trust region subproblem and semidefinite programming , 2004, Optim. Methods Softw..
[32] M. Hestenes. Pairs of quadratic forms , 1968 .
[33] Boris Polyak. Convexity of Quadratic Transformations and Its Use in Control and Optimization , 1998 .
[34] J. J. Moré. Generalizations of the trust region problem , 1993 .
[35] An Extension of Polyak’s Theorem in a Hilbert Space , 2009 .
[36] E. Yaz. Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.
[37] Mustafa Ç. Pinar,et al. On the S-procedure and Some Variants , 2006, Math. Methods Oper. Res..
[38] Eric Schechter,et al. Handbook of Analysis and Its Foundations , 1996 .