Simulating melodic and harmonic expectations for tonal cadences using probabilistic models

Abstract This study examines how the mind’s predictive mechanisms contribute to the perception of cadential closure during music listening. Using the Information Dynamics of Music model (or IDyOM) to simulate the formation of schematic expectations—a finite-context (or n-gram) model that predicts the next event in a musical stimulus by acquiring knowledge through unsupervised statistical learning of sequential structure—we predict the terminal melodic and harmonic events from 245 exemplars of the five most common cadence categories from the classical style. Our findings demonstrate that (1) terminal events from cadential contexts are more predictable than those from non-cadential contexts; (2) models of cadential strength advanced in contemporary cadence typologies reflect the formation of schematic expectations; and (3) a significant decrease in predictability follows the terminal note and chord events of the cadential formula.

[1]  Robert O. Gjerdingen “Historically Informed” Corpus Studies , 2014 .

[2]  Geraint A. Wiggins,et al.  Towards Greater Objectivity in Music Theory: Information-Dynamic Analysis of Minimalist Music , 2007 .

[3]  Emilios Cambouropoulos,et al.  The Harmonic Musical Surface and Two Novel Chord Representation Schemes , 2016, Computational Music Analysis.

[4]  Crystal Peebles The role of segmentation and expectation in the perception of closure , 2011 .

[5]  Darrell Conklin,et al.  Representation and Discovery of Vertical Patterns in Music , 2002, ICMAI.

[6]  J. Hawkins,et al.  On Intelligence , 2004 .

[7]  Geraint A. Wiggins,et al.  The Role of Expectation and Probabilistic Learning in Auditory Boundary Perception: A Model Comparison , 2010, Perception.

[8]  M. Bar The proactive brain: using analogies and associations to generate predictions , 2007, Trends in Cognitive Sciences.

[9]  Ian H. Witten,et al.  Data Compression Using Adaptive Coding and Partial String Matching , 1984, IEEE Trans. Commun..

[10]  Marcus T. Pearce,et al.  The construction and evaluation of statistical models of melodic structure in music perception and composition , 2005 .

[11]  Ian H. Witten,et al.  Multiple viewpoint systems for music prediction , 1995 .

[12]  Sarah C. Creel,et al.  Distant melodies: statistical learning of nonadjacent dependencies in tone sequences. , 2004, Journal of experimental psychology. Learning, memory, and cognition.

[13]  Geraint A. Wiggins,et al.  Improved Methods for Statistical Modelling of Monophonic Music , 2004 .

[14]  John G. Cleary,et al.  Unbounded length contexts for PPM , 1995, Proceedings DCC '95 Data Compression Conference.

[15]  Jeffrey M. Zacks,et al.  Segmentation in the perception and memory of events , 2008, Trends in Cognitive Sciences.

[16]  Paul R. Cohen,et al.  Voting experts: An unsupervised algorithm for segmenting sequences , 2007, Intell. Data Anal..

[17]  Matthias Abend Cognitive Foundations Of Musical Pitch , 2016 .

[18]  Robert L. Mercer,et al.  An Estimate of an Upper Bound for the Entropy of English , 1992, CL.

[19]  Robert O. Gjerdingen,et al.  Defining a prototypical utterance. , 1991 .

[20]  C. Stevens,et al.  Sweet Anticipation: Music and the Psychology of Expectation, by David Huron . Cambridge, Massachusetts: MIT Press, 2006 , 2007 .

[21]  Hermann Ney,et al.  Distant bigram language modelling using maximum entropy , 1997, 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[22]  Roland Eberlein,et al.  A Method of Analysing Harmony, Based on Interval Patterns or "Gestalten" , 1996, Joint International Conference on Cognitive and Systematic Musicology.

[23]  Charles Rosen,et al.  The Classical Style: Haydn, Mozart, Beethoven , 1971 .

[24]  Ian Quinn,et al.  Are Pitch-Class Profiles Really “Key for Key”? , 2010 .

[25]  Thomas G. Dietterich Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms , 1998, Neural Computation.

[26]  David R. W. Sears,et al.  Perceiving the Classical Cadence , 2014 .

[27]  William Earl Caplin,et al.  Classical Form: A Theory of Formal Functions for the Instrumental Music of Haydn, Mozart, and Beethoven , 1998 .

[28]  J. Hill,et al.  Classic Music: Expression, Form, and Style. , 1983 .

[29]  María Herrojo Ruiz,et al.  Unsupervised statistical learning underpins computational, behavioural, and neural manifestations of musical expectation , 2010, NeuroImage.

[30]  Jeffrey L. Elman,et al.  Finding Structure in Time , 1990, Cogn. Sci..

[31]  M. Neuwirth,et al.  What Is a Cadence?: Theoretical and Analytical Perspectives on Cadences in the Classical Repertoire , 2015 .

[32]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[33]  James A. Hepokoski,et al.  Elements of Sonata Theory , 2006 .

[34]  Geraint A. Wiggins,et al.  EXPECTATION IN MELODY: THE INFLUENCE OF CONTEXT AND LEARNING , 2006 .

[35]  S. Jeong Harmony , 2012, SIGGRAPH '12.

[36]  Robert O. Gjerdingen,et al.  Music in the galant style , 2007 .

[37]  J. Bartlett,et al.  PSYCHOMUSICOLOGY Spring 1981 THE IMPORTANCE OF 'INTERVAL INFORMATION IN LONG-TERM MEMORY FOR MELODIES , 1981 .

[38]  Michael R. Brent,et al.  An Efficient, Probabilistically Sound Algorithm for Segmentation and Word Discovery , 1999, Machine Learning.

[39]  Eugene Narmour,et al.  The Analysis and Cognition of Basic Melodic Structures: The Implication-Realization Model , 1990 .

[40]  L. Cuddy,et al.  Expectancies generated by melodic intervals: Perceptual judgments of melodic continuity , 1995, Perception & psychophysics.

[41]  M. Pearce,et al.  Electrophysiological correlates of melodic processing in congenital amusia , 2013, Neuropsychologia.

[42]  Yorick Wilks,et al.  A Closer Look at Skip-gram Modelling , 2006, LREC.

[43]  William E. Caplin,et al.  The Classical Cadence: Conceptions and Misconceptions , 2004 .

[44]  Robert O. Gjerdingen,et al.  A Classic Turn of Phrase: Music and the Psychology of Convention , 1988 .

[45]  Geraint A. Wiggins,et al.  Methods for Combining Statistical Models of Music , 2004, CMMR.

[46]  David R. W. Sears,et al.  THE PERCEPTION OF CADENTIAL CLOSURE , 2015 .

[47]  E. Margulis A Model of Melodic Expectation , 2005 .

[48]  Alistair Moffat,et al.  Implementing the PPM data compression scheme , 1990, IEEE Trans. Commun..

[49]  Geraint A. Wiggins,et al.  The Prediction of Merged Attributes with Multiple Viewpoint Systems , 2016 .

[50]  Geraint A. Wiggins,et al.  Probabilistic models of expectation violation predict psychophysiological emotional responses to live concert music , 2013, Cognitive, Affective, & Behavioral Neuroscience.

[51]  Burton S. Rosner,et al.  Harmonic Closure: Music Theory and Perception , 1992 .

[52]  M. Pearce,et al.  Tracking of pitch probabilities in congenital amusia , 2012, Neuropsychologia.

[53]  E. Schellenberg,et al.  Simplifying the Implication-Realization Model of Melodic Expectancy , 1997 .

[54]  Claude E. Shannon,et al.  Prediction and Entropy of Printed English , 1951 .

[55]  James Hepokoski,et al.  Elements of sonata theory : norms, types, and deformations in the late eighteenth-century sonata , 2006 .

[56]  Leonard B. Meyer,et al.  Music, the arts, and ideas , 1967 .

[57]  B. L. Welch ON THE COMPARISON OF SEVERAL MEAN VALUES: AN ALTERNATIVE APPROACH , 1951 .

[58]  Hinrich Schütze,et al.  Book Reviews: Foundations of Statistical Natural Language Processing , 1999, CL.

[59]  A. Clark Whatever next? Predictive brains, situated agents, and the future of cognitive science. , 2013, The Behavioral and brain sciences.

[60]  Ian H. Witten,et al.  The zero-frequency problem: Estimating the probabilities of novel events in adaptive text compression , 1991, IEEE Trans. Inf. Theory.

[61]  Richard E. Ladner,et al.  On-line stochastic processes in data compression , 1996 .

[62]  Geraint A. Wiggins,et al.  Auditory Expectation: The Information Dynamics of Music Perception and Cognition , 2012, Top. Cogn. Sci..

[63]  F. Bartlett,et al.  Remembering: A Study in Experimental and Social Psychology , 1932 .

[64]  W. Dowling Emotion and Meaning in Music , 2008 .

[65]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[66]  Suzanne Bunton,et al.  Semantically Motivated Improvements for PPM Variants , 1997, Comput. J..

[67]  John G. Cleary,et al.  MODELLING AND GENERATING MUSIC USING MULTIPLE VIEWPOINTS , 1988 .

[68]  J. M. Troost,et al.  Ascending and Descending Melodic Intervals: Statistical Findings and Their Perceptual Relevance , 1989 .

[69]  Janet Schmalfeldt,et al.  Cadential processes: The evaded cadence and the “one more time” technique , 1992 .

[70]  Leonard B. Meyer Explaining Music: Essays and Explorations , 1973 .

[71]  Edward D. Latham,et al.  DREI NEBENSONNEN: FORTE'S LINEAR-MOTIVIC ANALYSIS, KORNGOLD'S DIE TOTE STADT, AND SCHUBERT'S WINTERREISE AS VISIONS OF CLOSURE , 2009 .

[72]  Robert O. Gjerdingen,et al.  The Cognition of Basic Musical Structures , 2004 .

[73]  Elizabeth Hellmuth Margulis Melodic expectation: A discussion and model. , 2003 .

[74]  B. Snyder Music and Memory: An Introduction , 2001 .

[75]  Jobst Peter Fricke,et al.  Kadenzwahrnehmung und Kadenzgeschichte : ein Beitrag zu einer Grammatik der Musik = Cadence perception and the history of the cadence : a contribution to a grammar of music , 1992 .

[76]  Xuedong Huang,et al.  Improved topic-dependent language modeling using information retrieval techniques , 1999, 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258).

[77]  Christine Nadel,et al.  Explaining Psychological Statistics , 2016 .

[78]  M. Pearce,et al.  Predictive uncertainty in auditory sequence processing , 2014, Front. Psychol..

[79]  Alberto Maria Segre,et al.  The Use of Twitter to Track Levels of Disease Activity and Public Concern in the U.S. during the Influenza A H1N1 Pandemic , 2011, PloS one.

[80]  F ChenStanley,et al.  An Empirical Study of Smoothing Techniques for Language Modeling , 1996, ACL.