Optics and supercomputing

Storage, interconnection, and processing are discussed. Various types of optical disks and page-oriented holographic memories are considered. It is shown that optical storage is advancing rapidly and holds the potential of hundreds of megabytes per second data rates from a single storage unit, which can provide many new opportunities for supercomputing. Module-to-module, board-to-board, and chip-to-chip interconnection and gate-to-gate communication are discussed. It is concluded that optical interconnection is, in many cases, superior to electronic interconnection and holds the key to the development of future electrooptic systems. Optical computing devices are discussed and various application areas where optical processing as well as storage and interconnection are expected to play a role in the future are considered. The authors believe that optical processing, while holding considerable promise, lags behind its electronic counterpart primarily due to the fact that digital optical device development is in its infancy. They predict near-term systems will be electrooptic, with each technology providing its strength to the problem at hand. >

[1]  Beatrice Lazzerini Effective VLSI processor architectures for HLL computers: the RISC approach , 1989, IEEE Micro.

[2]  Cauligi S. Raghavendra,et al.  Optical Crossbar Networks , 1987, Computer.

[3]  Thomas K. Gaylord,et al.  Optical Digital Truth Table Look-Up Processing , 1985 .

[4]  M Mori,et al.  Magnetooptic erasable disk memory with two optical heads. , 1986, Applied optics.

[5]  Sadik C. Esener,et al.  Two-Dimensional Silicon/PLZT Spatial Light Modulators: Design Considerations And Technology , 1986 .

[6]  T. E. Bell,et al.  Optical computing: A field in flux , 1986, IEEE Spectrum.

[7]  D P Casasent,et al.  Factorized extended Kalman filter for optical processing. , 1986, Applied optics.

[8]  L. D. Hutcheson,et al.  Optical interconnects replace hardwire: Light promises to relieve bottlenecks in electric interconnections from cabinet to cabinet, board to board, IC to IC — and even within chips , 1987, IEEE Spectrum.

[9]  H. Scott Hinton,et al.  Architectural considerations for photonic switching networks , 1988, IEEE J. Sel. Areas Commun..

[10]  Nasser Peyghambarian,et al.  Fabrication of arrays of GaAs optical bistable devices , 1986 .

[11]  James Smith,et al.  A Simulation Study of the CRAY X-MP Memory System , 1986, IEEE Transactions on Computers.

[12]  Robert E. Brooks Micromechanical Light Modulators On Silicon , 1985 .

[13]  R.P. Freese Optical disks become erasable , 1988, IEEE Spectrum.

[14]  Karl-Heinz Brenner,et al.  Digital optical computing with symbolic substitution. , 1986 .

[15]  W T Rhodes,et al.  Symbolic substitution applications to image processing. , 1988, Applied optics.

[16]  Kevin P. McAuliffe,et al.  The IBM Research Parallel Processor Prototype (RP3): Introduction and Architecture , 1985, ICPP.

[17]  G. Zorpette,et al.  Personal computers: Lessons learned , 1986, IEEE Spectrum.

[18]  Rod C. Alferness Waveguide electrooptic switch arrays , 1988, IEEE J. Sel. Areas Commun..

[19]  J. Erickson,et al.  A 1.7 gigabit-per-second, time-multiplexed photonic switching experiment , 1987, IEEE Communications Magazine.

[20]  Gregory F. Pfister,et al.  “Hot spot” contention and combining in multistage interconnection networks , 1985, IEEE Transactions on Computers.

[21]  C. Warde,et al.  Optical information processing characteristics of the microchannel spatial light modulator. , 1981, Applied optics.

[22]  C. Burrus,et al.  The quantum well self-electrooptic effect device: Optoelectronic bistability and oscillation, and self-linearized modulation , 1985 .

[23]  J. Goodman,et al.  Fiber-Optic Crossbar Switch With Broadcast Capability , 1988 .

[24]  P. Bruce Berra,et al.  An optical system for full text search , 1989, SIGIR '89.

[25]  David H. Bailey,et al.  Vector Computer Memory Bank Contention , 1987, IEEE Transactions on Computers.

[26]  B. J. Chang,et al.  Photoconductor-Thermoplastic Image Transducer , 1977 .

[27]  Zarka Cvetanovic,et al.  The Effects of Problem Partitioning, Allocation, and Granularity on the Performance of Multiple-Processor Systems , 1987, IEEE Transactions on Computers.

[28]  J. H. English,et al.  Array of optically bistable integrated self-electrooptic effect devices , 1986 .

[29]  W Stork,et al.  Optical perfect shuffle. , 1986, Applied optics.

[30]  J F Walkup,et al.  Optical techniques for real-time binary multiplication. , 1986, Applied optics.

[31]  Larry A. Bergman,et al.  Holographic optical interconnects for VLSI , 1986 .

[32]  P Nisenson,et al.  Real Time Optical Processing with Bi(12)SiO(20), PROM. , 1972, Applied optics.

[33]  P. Bruce Berra,et al.  Optical Techniques and Data/Knowledge Base Machines , 1987, Computer.

[34]  H K Liu,et al.  Optical matrix-matrix multiplication method demonstrated by the use of a multifocus hololens. , 1984, Optics letters.

[35]  A. Himeno,et al.  4 × 4 optical-gate matrix switch , 1985, Journal of Lightwave Technology.

[36]  G. Knight,et al.  Interface devices and memory materials , 1981 .

[37]  A Ghafoor,et al.  Design of a pipelined optical binary processor. , 1988, Applied optics.

[38]  Veljko M. Milutinovic,et al.  A Survey of Advanced Microprocessors and HLL Computer Architectures , 1986, Computer.

[39]  H J Caulfield,et al.  Optical database/knowledgebase machines. , 1990, Applied optics.

[40]  H. Goto,et al.  Overview of optical switching technologies in Japan , 1987, IEEE Communications Magazine.

[41]  Hyatt M. Gibbs,et al.  Optical Bistability, Logic Gating, and Waveguide Operation in Semiconductor Etalons , 1987, Computer.

[42]  S H Lee,et al.  Comparison between optical and electrical interconnects based on power and speed considerations. , 1988, Applied optics.

[43]  J. Goodman Introduction to Fourier optics , 1969 .

[44]  Ryozo Kishimoto,et al.  Optical self-routing switch using integrated laser diode optical switch , 1988, IEEE J. Sel. Areas Commun..

[45]  Joseph W. Goodman,et al.  Fan-in and Fan-out with Optical Interconnections , 1985 .

[46]  Duncan H. Lawrie,et al.  Supercomputing tradeoffs and the cedar system , 1988 .

[47]  G. Zorpette,et al.  Supercomputer experts predict expansive growth , 1989, IEEE Spectrum.

[48]  T. Karr,et al.  High-speed spatial light modulator , 1985, IEEE Journal of Quantum Electronics.

[49]  Lynn D. Hutcheson Optical Interconnect Technology Developments , 1986, FJCC.

[50]  Norman S. Matloff,et al.  Optimul: An optional interconnect for multiprocessor systems , 1988, ICS '88.

[51]  F T Yu,et al.  Implementation of symbolic substitution logic using optical associative memories. , 1987, Applied optics.

[52]  Alan Huang Parallel Algormiivls For Optical Digital Computers , 1983, Other Conferences.

[53]  H J Caulfield,et al.  Switched holograms for reconfigurable optical interconnection: demonstration of a prototype device. , 1988, Applied optics.

[54]  K. Johnson,et al.  Optical Computing And Image Processing With Ferroelectric Liquid Crystals , 1987 .

[55]  H. J. Caulfield,et al.  Eigenvector determination by noncoherent optical methods. , 1981, Applied optics.

[56]  Jack L. Jewell,et al.  Digital optics , 1989, Proc. IEEE.

[57]  S. K. Case,et al.  Image formation by multifacet holograms. , 1983, Applied optics.

[58]  Eitan Abraham,et al.  The optical computer , 1983 .

[59]  R.A. Athale,et al.  Optical processing using outer-product concepts , 1984, Proceedings of the IEEE.

[60]  F.J. Leonberger,et al.  Optical interconnections for VLSI systems , 1984, Proceedings of the IEEE.

[61]  N. Sheridon,et al.  The Ruticon family of erasable image recording devices , 1972 .

[62]  P. P.-S. Chen The compact disk ROM: How it works: An offshoot of the compact digital audio disk, this multimegabyte storage technique is revolutionizing database technology , 1986, IEEE Spectrum.

[63]  H. M. Gibbs,et al.  Nonlinear Etalons And Optical Computing , 1987, Other Conferences.

[64]  P. A. Ramamoorthy,et al.  Optical Implementation Of Systolic Finite Impulse Response Filters , 1987 .

[65]  Sing H. Lee Mathematical operations by optical processing , 1974 .

[66]  Demetri Psaltis,et al.  Two-Dimensional Magneto-Optic Spatial Light Modulator For Signal Processing , 1983 .

[67]  H. Gibbs Optical Bistability Controlling Light With Light , 1985 .

[68]  A W Lohmann,et al.  Digital optical adder based on spatial filtering. , 1986, Applied optics.

[69]  Y Li,et al.  Compact optical generalized perfect shuffle. , 1987, Applied optics.

[70]  Peter S. Guilfoyle,et al.  Combinatorial Logic Based Optical Computing , 1986, Other Conferences.

[71]  J W Goodman,et al.  Design considerations for holographic optical interconnects. , 1987, Applied optics.

[72]  Lynn D. Hutcheson,et al.  Optical interconnects replace hardware , 1987 .

[73]  T Yatagai,et al.  Cellular logic architectures for optical computers. , 1986, Applied optics.

[74]  T Sato,et al.  Organic dye materials for optical recording media. , 1986, Applied optics.

[75]  Mohammad R. Taghizadeh,et al.  Room temperature, visible wavelength optical bistability in ZnSe interference filters , 1984 .

[76]  Paul R. Prucnal,et al.  Self-Routing Photonic Switching Demonstration With Optical Control , 1987 .

[77]  J F Walkup,et al.  Two-dimensional optical Clos interconnection network and its uses. , 1988, Applied optics.

[78]  Jan Grinberg,et al.  A new real-time non-coherent to coherent light image converter - The hybrid field effect liquid crystal light valve , 1975 .

[79]  Lars Thylén,et al.  Strictly nonblocking 8×8 integrated optical switch matrix , 1986 .

[80]  D. Casasent,et al.  Acoustooptic linear algebra processors: Architectures, algorithms, and applications , 1984, Proceedings of the IEEE.

[81]  Joseph A. Calabria,et al.  A High-Speed, Large-Capacity, Jukebox "Optical Disk System" , 1985, Computer.

[82]  Kurt A. Rubin,et al.  New phase change material for optical recording with short erase time , 1986 .

[83]  Arthur D. Fisher,et al.  Photoemitter Membrane Light Modulator , 1986 .

[84]  Akira Suzuki,et al.  An experiment on high-speed optical time-division switching , 1986 .

[85]  Demetri Psaltis,et al.  Optical Neural Computers , 1987, Topical Meeting on Optical Computing.

[86]  John F. Beetem,et al.  The GF11 supercomputer , 1985, ISCA '85.

[87]  D Schuocker,et al.  Interferometric converter: core of an optical residue computer. , 1987, Applied optics.

[88]  Mohsen Guizani,et al.  The Impact of Optics on Data and Knowledge Base Systems , 1989, IEEE Trans. Knowl. Data Eng..

[89]  Y Fainman,et al.  Optical implementation of an iterative algorithm formatrix inversion. , 1987, Applied optics.

[90]  Guilfoyle Ps,et al.  Combinatorial logic based digital optical computing architectures , 1988 .

[91]  R. Ian MacDonald Terminology for photonic matrix switches , 1988, IEEE J. Sel. Areas Commun..

[92]  Karl-Heinz Brenner,et al.  Digital Optical Computing With Symbolic Substitution , 1989, Other Conferences.

[93]  David A. B. Miller,et al.  Quantum Wells For Optical Information Processing , 1987 .

[94]  Jordan Isailović,et al.  Videodisc and optical memory systems , 1984 .