Quantum finite automata: survey, status and research directions

Quantum computing is concerned with computer technology based on the principles of quantum mechanics, with operations performed at the quantum level. Quantum computational models make it possible to analyze the resources required for computations. Quantum automata can be classified thusly: quantum finite automata, quantum sequential machine, quantum pushdown automata, quantum Turing machine and orthomodular lattice-valued automata. These models are useful for determining the expressive power and boundaries of various computational features. In light of the current state of quantum computation theory research, a systematic review of the literature seems timely. This article seeks to provide a comprehensive and systematic analysis of quantum finite automata models, quantum finite automata models with density operators and quantum finite automata models with classical states, interactive proof systems, quantum communication complexity and query complexity as described in the literature. The statistics of quantum finite automata related papers are shown and open problems are identified for more advanced research. The current status of quantum automata theory is distributed into various categories. This research work also highlights the previous research, current status and future directions of quantum automata models.

[1]  Daowen Qiu,et al.  Determining the equivalence for one-way quantum finite automata , 2007, Theor. Comput. Sci..

[2]  John Watrous,et al.  On the power of quantum finite state automata , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[3]  Ajay Kumar,et al.  On the Power of Quantum Queue Automata in Real-time , 2018, ArXiv.

[4]  Ajay Kumar,et al.  Neurocomputing approach to matrix product state using quantum dynamics , 2018, Quantum Inf. Process..

[5]  Shenggen Zheng,et al.  Generalizations of the distributed Deutsch–Jozsa promise problem , 2014, Mathematical Structures in Computer Science.

[6]  Tomoyuki Yamakami Constant-space quantum interactive proofs against multiple provers , 2014, Inf. Process. Lett..

[7]  Alex Brodsky,et al.  Characterizations of 1-Way Quantum Finite Automata , 2002, SIAM J. Comput..

[8]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[9]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[10]  Takeshi Koshiba,et al.  Polynomial-Time Algorithms for the Equivalence for One-Way Quantum Finite Automata , 2009, ISAAC.

[11]  Mika Hirvensalo,et al.  Quantum Automata with Open Time Evolution , 2010, Int. J. Nat. Comput. Res..

[12]  Shenggen Zheng,et al.  On the state complexity of semi-quantum finite automata , 2014, RAIRO Theor. Informatics Appl..

[13]  Paulo Mateus,et al.  Exponentially more concise quantum recognition of non-RMM regular languages , 2015, J. Comput. Syst. Sci..

[14]  Andris Ambainis,et al.  Improved constructions of quantum automata , 2009, Theor. Comput. Sci..

[15]  Andris Ambainis,et al.  Probabilities to Accept Languages by Quantum Finite Automata , 1999, COCOON.

[16]  Andrew Chi-Chih Yao,et al.  Quantum Circuit Complexity , 1993, FOCS.

[17]  Amílcar Sernadas,et al.  Exponentially more concise quantum recognition of non-RMM regular languages , 2009, J. Comput. Syst. Sci..

[18]  Shenggen Zheng,et al.  Time-Space Complexity Advantages for Quantum Computing , 2017, TPNC.

[19]  Carlo Mereghetti,et al.  Quantum finite automata: Advances on Bertoni's ideas , 2017, Theor. Comput. Sci..

[20]  Paulo Mateus,et al.  On the complexity of minimizing probabilistic and quantum automata , 2012, Inf. Comput..

[21]  Jozef Gruska,et al.  Quantum Computing , 2008, Wiley Encyclopedia of Computer Science and Engineering.

[22]  A. C. Cem Say,et al.  Languages Recognized with Unbounded Error by Quantum Finite Automata , 2008, CSR.

[23]  Ilze Dzelme,et al.  Quantum Finite Automata and Logics , 2006, SOFSEM.

[24]  R. Landauer,et al.  Irreversibility and heat generation in the computing process , 1961, IBM J. Res. Dev..

[25]  H. S. Allen The Quantum Theory , 1928, Nature.

[26]  Massimo Pica Ciamarra Quantum Reversibility and a New Model of Quantum Automaton , 2001, FCT.

[27]  Jozef Gruska,et al.  Multi-letter quantum finite automata: decidability of the equivalence and minimization of states , 2011, Acta Informatica.

[28]  Amandeep Singh Bhatia,et al.  Quantum ω-Automata over Infinite Words and Their Relationships , 2019, International Journal of Theoretical Physics.

[29]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[30]  Kumar S. Ray,et al.  1-Way Multihead Quantum Finite State Automata , 2016 .

[31]  Alberto Bertoni,et al.  Trace monoids with idempotent generators and measure-only quantum automata , 2010, Natural Computing.

[32]  Andris Ambainis,et al.  On the Class of Languages Recognizable by 1-Way Quantum Finite Automata , 2001, STACS.

[33]  John Watrous,et al.  On the complexity of simulating space-bounded quantum computations , 2004, computational complexity.

[34]  A. C. Cem Say,et al.  Magic coins are useful for small-space quantum machines , 2014, Quantum Inf. Comput..

[35]  Shenggen Zheng,et al.  From Quantum Query Complexity to State Complexity , 2014, Computing with New Resources.

[36]  Daowen Qiu,et al.  An overview of quantum computation models: quantum automata , 2008, Frontiers of Computer Science in China.

[37]  Jiacun Wang,et al.  Handbook of Finite State Based Models and Applications , 2012 .

[38]  A. C. Cem Say,et al.  Quantum Finite Automata: A Modern Introduction , 2014, Computing with New Resources.

[39]  Rusins Freivalds,et al.  Postselection Finite Quantum Automata , 2010, UC.

[40]  Kazuo Iwama,et al.  Undecidability on quantum finite automata , 1999, STOC '99.

[41]  Ajay Kumar,et al.  Quantifying matrix product state , 2018, Quantum Inf. Process..

[42]  A. C. Cem Say,et al.  Language Recognition by Generalized Quantum Finite Automata with Unbounded Error , 2009, ArXiv.

[43]  Shenggen Zheng,et al.  Promise problems solved by quantum and classical finite automata , 2014, Theor. Comput. Sci..

[44]  M. W. Shields An Introduction to Automata Theory , 1988 .

[45]  Shenggen Zheng,et al.  One-Way Finite Automata with Quantum and Classical States , 2011, Languages Alive.

[46]  Andris Ambainis,et al.  Algebraic Results on Quantum Automata , 2005, Theory of Computing Systems.

[47]  Shenggen Zheng,et al.  Power of the interactive proof systems with verifiers modeled by semi-quantum two-way finite automata , 2013, Inf. Comput..

[48]  Theodore Andronikos,et al.  Quantum automata for infinite periodic words , 2015, 2015 6th International Conference on Information, Intelligence, Systems and Applications (IISA).

[49]  James P. Crutchfield,et al.  Quantum automata and quantum grammars , 2000, Theor. Comput. Sci..

[50]  Carlo Mereghetti,et al.  Size lower bounds for quantum automata , 2014, Theor. Comput. Sci..

[51]  D. Leibfried,et al.  Quantum state manipulation of trapped atomic ions , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[52]  Ajay Kumar,et al.  Modeling of RNA secondary structures using two-way quantum finite automata , 2018 .

[53]  Daowen Qiu,et al.  Revisiting the Power and Equivalence of One-Way Quantum Finite Automata , 2010, ICIC.

[54]  Alberto Bertoni,et al.  Quantum Computing: 1-Way Quantum Automata , 2003, Developments in Language Theory.

[55]  Shenggen Zheng,et al.  Some Languages Recognized by Two-Way Finite Automata with Quantum and Classical States , 2011, Int. J. Found. Comput. Sci..

[56]  R. Feynman Simulating physics with computers , 1999 .

[57]  Martin Macko,et al.  On Closure Properties of Quantum Finite Automata , 2022 .

[58]  Andrei Khrennikov,et al.  Automaton model of protein: dynamics of conformational and functional states , 2017, Progress in biophysics and molecular biology.

[59]  Mika Hirvensalo,et al.  Classical and quantum realtime alternating automata , 2014, NCMA.

[60]  Abuzer Yakaryilmaz,et al.  Unary probabilistic and quantum automata on promise problems , 2015, Quantum Inf. Process..

[61]  Andris Ambainis,et al.  Superiority of exact quantum automata for promise problems , 2011, Inf. Process. Lett..

[62]  Abuzer Yakaryilmaz,et al.  Implications of Quantum Automata for Contextuality , 2014, CIAA.

[63]  A. C. Cem Say,et al.  Unbounded-error quantum computation with small space bounds , 2010, Inf. Comput..

[64]  Sheng Yu,et al.  Hierarchy and equivalence of multi-letter quantum finite automata , 2008, Theor. Comput. Sci..

[65]  Abuzer Yakaryilmaz,et al.  Superiority of one-way and realtime quantum machines , 2011, RAIRO Theor. Informatics Appl..

[66]  Shenggen Zheng,et al.  State Succinctness of two-Way finite Automata with quantum and Classical States , 2012, QLSC.

[67]  Ansis Rosmanis,et al.  Multi-letter Reversible and Quantum Finite Automata , 2007, Developments in Language Theory.

[68]  Shenggen Zheng,et al.  Two-Tape Finite Automata with Quantum and Classical States , 2011, 1104.3634.

[69]  Carlo Mereghetti,et al.  On the Power of One-Way Automata with Quantum and Classical States , 2014, CIAA.

[70]  A. C. Cem Say,et al.  Succinctness of two-way probabilistic and quantum finite automata , 2009, Discret. Math. Theor. Comput. Sci..

[71]  Daowen Qiu,et al.  A note on quantum sequential machines , 2009, Theor. Comput. Sci..

[72]  Masaki Nakanishi,et al.  Classical and Quantum Counter Automata on Promise Problems , 2014, CIAA.

[73]  Ashwin Nayak,et al.  Optimal lower bounds for quantum automata and random access codes , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[74]  Tomoyuki Yamakami One-Way Reversible and Quantum Finite Automata with Advice , 2012, LATA.

[75]  A. C. Cem Say,et al.  Debates with Small Transparent Quantum Verifiers , 2014, Developments in Language Theory.

[76]  Andris Ambainis,et al.  1-way quantum finite automata: strengths, weaknesses and generalizations , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[77]  Andris Ambainis,et al.  Dense quantum coding and quantum finite automata , 2002, JACM.

[78]  A. C. Cem Say,et al.  Efficient probability amplification in two-way quantum finite automata , 2009, Theor. Comput. Sci..

[79]  Carlo Mereghetti,et al.  Complexity of Promise Problems on Classical and Quantum Automata , 2014, Computing with New Resources.

[80]  Harumichi Nishimura,et al.  An Application of Quantum Finite Automata to Interactive Proof Systems , 2004, CIAA.

[81]  Ajay Kumar,et al.  On the power of two-way multihead quantum finite automata , 2019, RAIRO Theor. Informatics Appl..

[82]  Daowen Qiu Some Observations on Two-Way Finite Automata with Quantum and Classical States , 2008, ICIC.

[83]  J. R. Mitchell,et al.  Grover's search algorithm: An optical approach , 1999, quant-ph/9905086.

[84]  Abuzer Yakaryilmaz,et al.  Looking for Pairs that Hard to Separate: A Quantum Approach , 2016, CIAA.

[85]  Lihua Wu,et al.  Characterizations of one-way general quantum finite automata , 2009, Theor. Comput. Sci..

[86]  Andris Ambainis,et al.  Dense quantum coding and a lower bound for 1-way quantum automata , 1998, STOC '99.

[87]  Andris Ambainis,et al.  Two-way finite automata with quantum and classical state , 1999, Theor. Comput. Sci..