Context determines content: an approach to resource recommendation in folksonomies

By means of tagging in social bookmarking applications, so called folksonomies emerge collaboratively. Folksonomies have shown to contain information that is beneficial for resource recommendation. However, as folksonomies are not designed to support recommendation tasks, there are drawbacks of the various recommendation techniques. Graph-based recommendation in folksonomies for example suffers from the problem of concept drift. Vector space based recommendation approaches in folksonomies suffer from sparseness of available data. In this paper, we propose the flexible framework VSScore which incorporates context-specific information into the recommendation process to tackle these issues. Additionally, as an alternative to the evaluation methodology LeavePostOut we propose an adaptation LeaveRTOut for resource recommendation in folksonomies. In a subset of resource recommendation tasks evaluated, the proposed recommendation framework VSScore performs significantly more effective than the baseline algorithm FolkRank.

[1]  Pablo Castells,et al.  Semantic contextualisation in a news recommender system , 2009 .

[2]  Isabella Peters,et al.  Folksonomies - Indexing and Retrieval in Web 2.0 , 2009, Knowledge and Information.

[3]  Andreas Hotho,et al.  Information Retrieval in Folksonomies: Search and Ranking , 2006, ESWC.

[4]  Ido Guy,et al.  Personalized social search based on the user's social network , 2009, CIKM.

[5]  James H. Martin,et al.  Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition , 2000 .

[6]  John Riedl,et al.  An algorithmic framework for performing collaborative filtering , 1999, SIGIR '99.

[7]  Ralf Steinmetz,et al.  FReSET: an evaluation framework for folksonomy-based recommender systems , 2012, RSWeb@RecSys.

[8]  Nicola Henze,et al.  Context-based ranking in folksonomies , 2009, HT '09.

[9]  Steffen Staab,et al.  RichVSM: enRiched vector space models for folksonomies , 2009, HT '09.

[10]  Nicola Henze,et al.  The Impact of Multifaceted Tagging on Learning Tag Relations and Search , 2010, ESWC.

[11]  Doreen Böhnstedt,et al.  Collaborative Semantic Tagging of Web Resources on the Basis of Individual Knowledge Networks , 2009, UMAP.

[12]  B. Mobasher,et al.  Improving Link Analysis for Tag Recommendation in Folksonomies , 2010 .

[13]  Toine Bogers,et al.  Movie Recommendation using Random Walks over the Contextual Graph , 2010 .

[14]  Andreas Hotho,et al.  Tag Recommendations in Folksonomies , 2007, LWA.

[15]  J. Hintze,et al.  Violin plots : A box plot-density trace synergism , 1998 .

[16]  Hinrich Schütze,et al.  Introduction to information retrieval , 2008 .

[17]  A.P.J. van den Bosch,et al.  Recommender Systems for Social Bookmarking , 2005 .

[18]  Haim Levkowitz,et al.  Introduction to information retrieval (IR) , 2008 .

[19]  Dominik Benz,et al.  The social bookmark and publication management system bibsonomy , 2010, The VLDB Journal.