25th Anniversary Article: Metal Oxide Particles in Materials Science: Addressing All Length Scales

The fundamental mission of materials science is the description of matter over all length scales. In this review, we apply this concept to particle research. Based on metal oxides, we show that every size range offers its specific features, and every size range had its era, when it was in the center of the research activities. In the first part of the review, we discuss on three metal oxides as examples, how and why the research focus changed its targeted size regime from the micrometer to the nanometer scale and back to the macroscopic world. Next, we present the distinct advantages of using nanoparticles over micrometer-sized particles in selected devices and we point out how such a shift in the size regime opens up new research directions. Finally, we exemplify the methods to introduce nanoparticles into macroscopic objects to make functional ceramics.

[1]  Changwen Hu,et al.  Interconnected core–shell MoO2 microcapsules with nanorod-assembled shells as high-performance lithium-ion battery anodes , 2012 .

[2]  M. Bentzon,et al.  Phase contrast from a regular stacking of equally sized iron-oxide spheres , 1991 .

[3]  L. Hupa,et al.  Comparison of self-cleaning properties of three titania coatings on float glass , 2011 .

[4]  Jinlin Li,et al.  Template-free synthesis of hollow core–shell MoO2 microspheres with high lithium-ion storage capacity , 2012 .

[5]  John A. Rogers,et al.  Inorganic Semiconductors for Flexible Electronics , 2007 .

[6]  Moussa N'Gom,et al.  Single particle plasmon spectroscopy of silver nanowires and gold nanorods. , 2008, Nano letters.

[7]  M. Antonietti,et al.  Ligand‐Directed Assembly of Preformed Titania Nanocrystals into Highly Anisotropic Nanostructures , 2004 .

[8]  Chunxiang Xu,et al.  Control mechanism behind broad fluorescence from violet to orange in ZnO quantum dots , 2013 .

[9]  P. Yang,et al.  High quantum efficiency of band-edge emission from ZnO nanowires. , 2011, Nano letters.

[10]  D. Jeong,et al.  Emerging memories: resistive switching mechanisms and current status , 2012, Reports on progress in physics. Physical Society.

[11]  Yujia Zeng,et al.  Band structure quantization in nanometer sized ZnO clusters. , 2013, Nanoscale.

[12]  André R Studart,et al.  Composites Reinforced in Three Dimensions by Using Low Magnetic Fields , 2012, Science.

[13]  Rolf Apetz,et al.  Transparent Alumina: A Light‐Scattering Model , 2003 .

[14]  E. Sargent Solar Cells, Photodetectors, and Optical Sources from Infrared Colloidal Quantum Dots , 2008 .

[15]  Rafal E. Dunin-Borkowski,et al.  Imaging Catalysts at Work: A Hierarchical Approach from the Macro‐ to the Meso‐ and Nano‐scale , 2013 .

[16]  G. Buxbaum Industrial inorganic pigments , 1998 .

[17]  M. D. Bentzon,et al.  Ordered aggregates of ultrafine iron oxide particles: ‘Super crystals’ , 1989 .

[18]  Changhong Liu,et al.  High‐Density, Ordered Ultraviolet Light‐Emitting ZnO Nanowire Arrays , 2003 .

[19]  Faat Garifullin,et al.  Materials science and technology of materials , 2014 .

[20]  Z. Mei,et al.  Controlled Growth of High‐Quality ZnO‐Based Films and Fabrication of Visible‐Blind and Solar‐Blind Ultra‐Violet Detectors , 2009 .

[21]  L. Liz‐Marzán,et al.  Size Effects in ZnO: The Cluster to Quantum Dot Transition , 2003 .

[22]  Wha-Tzong Whang,et al.  Effect of surface stabilization of nanoparticles on luminescent characteristics in ZnO/poly(hydroxyethyl methacrylate) nanohybrid films , 2005 .

[23]  R. Schlögl,et al.  Ligand functionality as a versatile tool to control the assembly behavior of preformed titania nanocrystals. , 2005, Chemistry.

[24]  A. Vedda,et al.  Multifunctional role of rare earth doping in optical materials: nonaqueous sol-gel synthesis of stabilized cubic HfO2 luminescent nanoparticles. , 2013, ACS nano.

[25]  Kang L. Wang,et al.  High-speed graphene transistors with a self-aligned nanowire gate , 2010, Nature.

[26]  Reinhard Nesper,et al.  Oxidic nanotubes and nanorods--anisotropic modules for a future nanotechnology. , 2002, Angewandte Chemie.

[27]  Y. Oaki,et al.  Homogeneous and disordered assembly of densely packed titanium oxide nanocrystals: an approach to coupled synthesis and assembly in aqueous solution. , 2012, Chemistry.

[28]  P. Kleinschmit,et al.  Superfine oxide powders— flame hydrolysis and hydrothermal synthesis , 1989 .

[29]  M. Fernández-García,et al.  Advanced nanoarchitectures for solar photocatalytic applications. , 2012, Chemical reviews.

[30]  M. Wójtowicz,et al.  Radioluminescence and photoluminescence of hafnia-based Eu-doped phosphors , 2009 .

[31]  Feng Yan,et al.  Infrared Photodetectors Based on CVD‐Grown Graphene and PbS Quantum Dots with Ultrahigh Responsivity , 2012, Advanced materials.

[32]  C. Avendaño,et al.  Novel MoO2/carbon hierarchical nano/microcomposites: synthesis, characterization, solid state transformations and thiophene HDS activity. , 2013, Dalton transactions.

[33]  M. Kovalenko,et al.  Prospects of colloidal nanocrystals for electronic and optoelectronic applications. , 2010, Chemical reviews.

[34]  M. Marelli,et al.  Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. , 2012, Journal of the American Chemical Society.

[35]  Masashi Kawasaki,et al.  Resistance switching memory device with a nanoscale confined current path , 2007 .

[36]  A. Krell,et al.  Fine‐Grained Transparent Spinel Windows by the Processing of Different Nanopowders , 2010 .

[37]  R. Janssen,et al.  Resistive switching in organic memories with a spin-coated metal oxide nanoparticle layer , 2008 .

[38]  Jr-hau He,et al.  In situ TEM and energy dispersion spectrometer analysis of chemical composition change in ZnO nanowire resistive memories. , 2013, Analytical chemistry.

[39]  Pascal Normand,et al.  Forming-free resistive switching memories based on titanium-oxide nanoparticles fabricated at room temperature , 2013 .

[40]  S. Odenbach Ferrofluids—magnetically controlled suspensions , 2003 .

[41]  R. Torrecillas,et al.  On the transparency of nanostructured alumina: Rayleigh-Gans model for anisotropic spheres. , 2009, Optics express.

[42]  Masateru Taniguchi,et al.  Resistive switching multistate nonvolatile memory effects in a single cobalt oxide nanowire. , 2010, Nano letters.

[43]  A. Burger,et al.  Front Matter for Volume 7805 , 2010 .

[44]  Yadong Yin,et al.  Highly tunable superparamagnetic colloidal photonic crystals. , 2007, Angewandte Chemie.

[45]  A. Ikesue,et al.  Single crystal and transparent ceramic Nd-doped oxide laser materials: a comparative spectroscopic investigation , 2004 .

[46]  Z. Ye,et al.  Highly efficient orange emission in ZnO:Se nanorods , 2010 .

[47]  B. Smarsly,et al.  Formation of Inorganic Nanofibers from Preformed TiO2 Nanoparticles via Electrospinning , 2011 .

[48]  J. Hanson,et al.  Nanostructured oxides in chemistry: characterization and properties. , 2004, Chemical reviews.

[49]  Y. Oaki,et al.  Homogeneous and Disordered Assembly of Densely Packed Nanocrystals , 2010 .

[50]  Wei Li,et al.  Step-Growth Polymerization of Inorganic Nanoparticles , 2010, Science.

[51]  Yasuhiro Sakamoto,et al.  Magnetic field-induced assembly of oriented superlattices from maghemite nanocubes , 2007, Proceedings of the National Academy of Sciences.

[52]  Xiaobo Chen,et al.  Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. , 2007, Chemical reviews.

[53]  Hong-Mei Xiao,et al.  Synthesis of silane surface modified ZnO quantum dots with ultrastable, strong and tunable luminescence. , 2011, Chemical communications.

[54]  M. Niederberger,et al.  Wet‐Chemical Preparation of Copper Foam Monoliths with Tunable Densities and Complex Macroscopic Shapes , 2013, Advanced materials.

[55]  S. Mazinani,et al.  Effect of ZnO nanoparticles on kinetics of thermal degradation and final properties of ethylene–propylene–diene rubber systems , 2012, Journal of Thermal Analysis and Calorimetry.

[56]  Elena Selli,et al.  Doping TiO2 with p-block elements: Effects on photocatalytic activity , 2013 .

[57]  Frank Schwierz,et al.  Electronics: Industry-compatible graphene transistors , 2011, Nature.

[58]  Jinghua Guo,et al.  Properties of Disorder-Engineered Black Titanium Dioxide Nanoparticles through Hydrogenation , 2013, Scientific Reports.

[59]  H. Pagnia,et al.  Bistable switching in electroformed metal–insulator–metal devices† , 1988 .

[60]  Hui Wu,et al.  Photoswitches and Memories Assembled by Electrospinning Aluminum‐Doped Zinc Oxide Single Nanowires , 2007 .

[61]  A. Furube,et al.  Mechanism of Particle Size Effect on Electron Injection Efficiency in Ruthenium Dye-Sensitized TiO2 Nanoparticle Films , 2010 .

[62]  F. Hund Inorganic Pigments: Bases for Colored, Uncolored, and Transparent Products , 1981 .

[63]  Norberto Chiodini,et al.  SnO2 nanoparticles in silica: Nanosized tools for femtosecond-laser machining of refractive index patterns , 2006 .

[64]  M. Antonietti,et al.  Magnetite Nanocrystals: Nonaqueous Synthesis, Characterization, and Solubility† , 2005 .

[65]  Q. Feng,et al.  Manganese oxide porous crystals , 1999 .

[66]  Jun Du,et al.  Graphene/Metal Contacts: Bistable States and Novel Memory Devices , 2012, Advanced materials.

[67]  Henry J. Snaith,et al.  Mesoporous TiO2 single crystals delivering enhanced mobility and optoelectronic device performance , 2013, Nature.

[68]  H. Morkoç,et al.  A COMPREHENSIVE REVIEW OF ZNO MATERIALS AND DEVICES , 2005 .

[69]  Brett Graeme Ammundsen,et al.  Novel Lithium‐Ion Cathode Materials Based on Layered Manganese Oxides , 2001 .

[70]  Y. Qian,et al.  Ethanothermal reduction to MoO2 microspheres via modified Pechini method , 2006 .

[71]  B. Viana,et al.  Improved scintillation time response in (Lu0.5Gd0.5)2O3 : Eu3+ compared with Lu2O3 : Eu3+ transparent ceramics , 2011 .

[72]  M. Kakihana,et al.  Cubic-tetragonal phase change of yttria-doped hafnia solid solution: High-resolution X-ray diffraction and Raman scattering , 2001 .

[73]  M. Süess,et al.  Template-free co-assembly of preformed Au and TiO2 nanoparticles into multicomponent 3D aerogels , 2011 .

[74]  N. Wan,et al.  Energy transfer and enhanced luminescence in metal oxide nanoparticle and rare earth codoped silica , 2008 .

[75]  Petr Novák,et al.  Interplay between size and crystal structure of molybdenum dioxide nanoparticles--synthesis, growth mechanism, and electrochemical performance. , 2011, Small.

[76]  A. K. Rath,et al.  Solution‐Processed Heterojunction Solar Cells Based on p‐type PbS Quantum Dots and n‐type Bi2S3 Nanocrystals , 2011, Advanced materials.

[77]  K. Novoselov,et al.  A roadmap for graphene , 2012, Nature.

[78]  M. Cantoni,et al.  Nanopore Characterization and Optical Modeling of Transparent Polycrystalline Alumina , 2012 .

[79]  A. Saveliev,et al.  Nucleation and growth mechanism for flame synthesis of MoO2 hollow microchannels with nanometer wall thickness. , 2009, Micron.

[80]  D. Koziej,et al.  Nonaqueous TiO2 nanoparticle synthesis: a versatile basis for the fabrication of self-supporting, transparent, and UV-absorbing composite films. , 2009, ACS applied materials & interfaces.

[81]  Rainer Waser,et al.  Complementary resistive switches for passive nanocrossbar memories. , 2010, Nature materials.

[82]  G. Stucky,et al.  Benzyl alcohol and titanium tetrachloride - A versatile reaction system for the nonaqueous and low-temperature preparation of crystalline and luminescent titania nanoparticles , 2002 .

[83]  R. Miranda,et al.  Molecular Self‐Assembly at Solid Surfaces , 2011, Advanced materials.

[84]  Paul V. Braun,et al.  Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes. , 2011, Nature nanotechnology.

[85]  Mingsheng Wang,et al.  Magnetic assembly route to colloidal responsive photonic nanostructures. , 2012, Accounts of chemical research.

[86]  Shouheng Sun,et al.  High-Temperature Solution-Phase Syntheses of Metal-Oxide Nanocrystals , 2013 .

[87]  T. Savenije,et al.  Effect of the particle size on the electron injection efficiency in dye-sensitized nanocrystalline TiO2 films studied by time-resolved microwave conductivity (TRMC) measurements , 2007 .

[88]  Bruce Dunn,et al.  Enhancing pseudocapacitive charge storage in polymer templated mesoporous materials. , 2013, Accounts of chemical research.

[89]  Jung-Ki Park Principles and Applications of Lithium Secondary Batteries: PARK:LI BATTERIES O-BK , 2012 .

[90]  Jie Liu,et al.  Influence of temperature and photoexcitation density on the quantum efficiency of defect emission in ZnO powders , 2007 .

[91]  Yong‐Sheng Hu,et al.  Synthesis and Lithium Storage Mechanism of Ultrafine MoO2 Nanorods , 2012 .

[92]  Ying Zhou,et al.  Oxide nanomaterials: synthetic developments, mechanistic studies, and technological innovations. , 2011, Angewandte Chemie.

[93]  Kinam Kim,et al.  A role for graphene in silicon-based semiconductor devices , 2011, Nature.

[94]  C. Feldmann Preparation of Nanoscale Pigment Particles , 2001 .

[95]  Markus Niederberger,et al.  The fascinating world of nanoparticle research , 2013 .

[96]  H. Xiong Photoluminescent ZnO nanoparticles modified by polymers , 2010 .

[97]  Scott C. Warren,et al.  Responsive and Nonequilibrium Nanomaterials , 2012 .

[98]  Feng Jiao,et al.  Mesoporous Crystalline β‐MnO2—a Reversible Positive Electrode for Rechargeable Lithium Batteries , 2007 .

[99]  Seung M. Oh,et al.  Thermoelectrochemically Activated MoO2 Powder Electrode for Lithium Secondary Batteries , 2009 .

[100]  X. Lou,et al.  Interconnected MoO2 nanocrystals with carbon nanocoating as high-capacity anode materials for lithium-ion batteries. , 2011, ACS applied materials & interfaces.

[101]  M. Romagnoli,et al.  Fully inorganic oxide-in-oxide ultraviolet nanocrystal light emitting devices , 2012, Nature Communications.

[102]  Norberto Chiodini,et al.  Thermally induced segregation of SnO2 nanoclusters in Sn-doped silica glasses from oversaturated Sn-doped silica xerogels , 2001 .

[103]  Moungi G Bawendi,et al.  Efficient luminescent down-shifting detectors based on colloidal quantum dots for dual-band detection applications. , 2011, ACS nano.

[104]  Yan Lin Aung,et al.  Ceramic laser materials , 2008 .

[105]  P. Bruce,et al.  Nanomaterials for rechargeable lithium batteries. , 2008, Angewandte Chemie.

[106]  B. Dunn,et al.  Templated nanocrystal-based porous TiO(2) films for next-generation electrochemical capacitors. , 2009, Journal of the American Chemical Society.

[107]  V. Bulović,et al.  Electrophoretic Deposition of CdSe/ZnS Quantum Dots for Light‐Emitting Devices , 2013, Advanced materials.

[108]  Zhiyong Tang,et al.  One‐Dimensional Assemblies of Nanoparticles: Preparation, Properties, and Promise , 2005 .

[109]  L. Bergström,et al.  Dispersion and surface functionalization of oxide nanoparticles for transparent photocatalytic and UV-protecting coatings and sunscreens , 2013, Science and technology of advanced materials.

[110]  Kang Sun,et al.  Doped Quantum Dots for White‐Light‐Emitting Diodes Without Reabsorption of Multiphase Phosphors , 2012, Advanced materials.

[111]  Xiujian Zhao,et al.  Tuning the relative concentration ratio of bulk defects to surface defects in TiO2 nanocrystals leads to high photocatalytic efficiency. , 2011, Journal of the American Chemical Society.

[112]  Donghai Wang,et al.  High Capacity MoO2/Graphite Oxide Composite Anode for Lithium-Ion Batteries. , 2012, The journal of physical chemistry letters.

[113]  Xiaobo Chen,et al.  Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals , 2011, Science.

[114]  I. Parkin,et al.  Characterisation of the photocatalyst Pilkington Activ (TM): a reference film photocatalyst? , 2003 .

[115]  S. C. Parker,et al.  Nanostructuring of β-MnO2: The Important Role of Surface to Bulk Ion Migration , 2013 .

[116]  Yu Hang Leung,et al.  Optical properties of ZnO nanostructures. , 2006, Small.

[117]  Yong‐Sheng Hu,et al.  Ordered mesoporous metallic MoO2 materials with highly reversible lithium storage capacity. , 2009, Nano letters.

[118]  R. Feigelson,et al.  Effect of Europium Concentration on Densification of Transparent Eu:Y2O3 Scintillator Ceramics Using Hot Pressing , 2010 .

[119]  T. Morimoto,et al.  Generating Blue and Red Luminescence from ZnO/Poly(ethylene glycol) Nanocomposites Prepared Using an In‐Situ Method , 2003 .

[120]  Henrique L. Gomes,et al.  Reproducible resistive switching in nonvolatile organic memories , 2007 .

[121]  S. Devaraj,et al.  Effect of Crystallographic Structure of MnO2 on Its Electrochemical Capacitance Properties , 2008 .

[122]  Ken-ichi Ueda,et al.  Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics—a new generation of solid state laser and optical materials , 2002 .

[123]  Daoben Zhu,et al.  Patterned Graphene as Source/Drain Electrodes for Bottom‐Contact Organic Field‐Effect Transistors , 2008 .

[124]  J. Augustynski,et al.  To what extent do the nanostructured photoelectrodes perform better than their macrocrystalline counterparts , 2013 .

[125]  É. Duguet,et al.  Design and elaboration of colloidal molecules: an overview. , 2011, Chemical Society reviews.

[126]  Chengshan Li,et al.  Stabilization of cubic structure in Mn-doped hafnia , 2012 .

[127]  Paul S Weiss,et al.  Cluster-assembled materials. , 2009, ACS nano.

[128]  Nathan T. Hahn,et al.  Enhancing visible light photo-oxidation of water with TiO2 nanowire arrays via cotreatment with H2 and NH3: synergistic effects between Ti3+ and N. , 2012, Journal of the American Chemical Society.

[129]  Handong Sun,et al.  Surface Eu-Treated ZnO Nanowires with Efficient Red Emission , 2010 .

[130]  M. Kahn,et al.  Organometallic chemistry: an alternative approach towards metal oxide nanoparticles , 2009 .

[131]  M. Nikl Scintillation detectors for x-rays , 2006 .

[132]  E. Longo,et al.  Oriented attachment mechanism in anisotropic nanocrystals: a "polymerization" approach. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[133]  Yi Gu,et al.  Quantum confinement in ZnO nanorods , 2004 .

[134]  L. Bergström,et al.  Shape Induced Symmetry in Self-Assembled Mesocrystals of Iron Oxide Nanocubes , 2011, Nano letters.

[135]  Markus Antonietti,et al.  Mesocrystals: inorganic superstructures made by highly parallel crystallization and controlled alignment. , 2005, Angewandte Chemie.

[136]  R. Waser,et al.  Nanoionics-based resistive switching memories. , 2007, Nature materials.

[137]  Y. Hu A highly efficient photocatalyst--hydrogenated black TiO2 for the photocatalytic splitting of water. , 2012, Angewandte Chemie.

[138]  Annabella Selloni,et al.  Structure and Energetics of Water Adsorbed at TiO2 Anatase (101) and (001) Surfaces , 1998 .

[139]  Jiayan Luo,et al.  Highly Electrochemical Reaction of Lithium in the Ordered Mesoporosus β-MnO2 , 2006 .

[140]  L. Bergström,et al.  2D to 3D crossover of the magnetic properties in ordered arrays of iron oxide nanocrystals. , 2013, Nanoscale.

[141]  X. Duan,et al.  Graphene: An Emerging Electronic Material , 2012, Advanced materials.

[142]  A. Corma,et al.  Enhancement of the photocatalytic activity of TiO2 through spatial structuring and particle size control: from subnanometric to submillimetric length scale. , 2008, Physical chemistry chemical physics : PCCP.

[143]  Lixia Yuan,et al.  Morphosynthesis of a hierarchical MoO2 nanoarchitecture as a binder-free anode for lithium-ion batteries , 2011 .

[144]  G. Whitesides,et al.  New approaches to nanofabrication: molding, printing, and other techniques. , 2005, Chemical reviews.

[145]  L. Bergström,et al.  Structural diversity in iron oxide nanoparticle assemblies as directed by particle morphology and orientation. , 2013, Nanoscale.

[146]  H. Hwang,et al.  Three‐Dimensional Integration of Organic Resistive Memory Devices , 2010, Advanced materials.

[147]  C. Serna,et al.  The Iron Oxides Strike Back: From Biomedical Applications to Energy Storage Devices and Photoelectrochemical Water Splitting , 2011, Advanced materials.

[148]  Heung Cho Ko,et al.  Ultrathin Sticker‐Type ZnO Thin Film Transistors Formed by Transfer Printing via Topological Confinement of Water‐Soluble Sacrificial Polymer in Dimple Structure , 2013 .

[149]  Jian Jiang,et al.  Recent Advances in Metal Oxide‐based Electrode Architecture Design for Electrochemical Energy Storage , 2012, Advanced materials.

[150]  Nan Zhang,et al.  Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications. , 2013, Nanoscale.

[151]  Howon Lee,et al.  SUPPLEMENTARY INFORMATION Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal , 2009 .

[152]  Yicheng Lu,et al.  Integrated ZnO nanotips on GaN light emitting diodes for enhanced emission efficiency , 2007 .

[153]  Liguang Xu,et al.  Dynamic nanoparticle assemblies. , 2012, Accounts of chemical research.

[154]  M. Antonietti,et al.  Self-assembly in inorganic and hybrid systems: beyond the molecular scale. , 2008, Dalton transactions.

[155]  P. Ngoepe,et al.  Predicting the electrochemical properties of MnO2 nanomaterials used in rechargeable li batteries: simulating nanostructure at the atomistic level. , 2009, Journal of the American Chemical Society.

[156]  J. Lewis,et al.  3D Printing of Interdigitated Li‐Ion Microbattery Architectures , 2013, Advanced materials.

[157]  Dewei Chu,et al.  High-performance nanocomposite based memristor with controlled quantum dots as charge traps. , 2013, ACS applied materials & interfaces.

[158]  L. Cademartiri,et al.  Nanowires and Nanostructures that Grow like Polymer Molecules , 2013, Advanced materials.

[159]  Haitao Liu,et al.  DNA nanostructure meets nanofabrication. , 2013, Chemical Society reviews.

[160]  M. Toprak,et al.  Bulk Synthesis of Transparent and Homogeneous Polymeric Hybrid Materials with ZnO Quantum Dots and PMMA , 2007 .

[161]  C. Klingshirn ZnO: material, physics and applications. , 2007, Chemphyschem : a European journal of chemical physics and physical chemistry.

[162]  A. Eychmüller,et al.  Colloidal Nanocrystal-Based Gels and Aerogels: Material Aspects and Application Perspectives , 2012 .

[163]  Y. Kuo,et al.  A light emitting device made from thin zirconium-doped hafnium oxide high-k dielectric film with or without an embedded nanocrystal layer , 2013 .

[164]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[165]  J. Ballato,et al.  Synthesis of Er-doped Lu2O3 nanoparticles and transparent ceramics , 2013 .

[166]  Jun Ding,et al.  Synthesis of ZnO Nanoparticles with Tunable Emission Colors and Their Cell Labeling Applications , 2010 .

[167]  H. Althues,et al.  Functional inorganic nanofillers for transparent polymers. , 2007, Chemical Society reviews.