Accurate Extraction of Equivalent Circuit Parameters of Spiral Resonators for the Design of Metamaterials

Spiral resonators (SRs) are one of the most common typologies of resonant magnetic unit cell for the realization of metamaterials. The precise knowledge of their lumped electric properties (<italic>RLC</italic> parameters) is of crucial importance in the metamaterial design. Thus, an accurate and unambiguous procedure for estimating the value of the <italic>RLC</italic> lumped parameters of compact SRs is introduced. The proposed procedure relies on a rigorous approach allowing a complete characterization of SRs also in terms of <inline-formula> <tex-math notation="LaTeX">$Q$ </tex-math></inline-formula>-factor. The method is general and valid for other shapes of resonators. The estimations have been finally verified by performing measurements on fabricated SRs through a magnetic probe.

[1]  H. A. Wheeler Simple Inductance Formulas for Radio Coils , 1928, Proceedings of the Institute of Radio Engineers.

[2]  R. Collin Field theory of guided waves , 1960 .

[3]  Frederick Warren Grover,et al.  Inductance Calculations: Working Formulas and Tables , 1981 .

[4]  D. Schieber,et al.  On the inductance of printed spiral coils , 1985 .

[5]  G. Dambrine,et al.  A new method for determining the FET small-signal equivalent circuit , 1988 .

[6]  J. Pendry,et al.  Magnetism from conductors and enhanced nonlinear phenomena , 1999 .

[7]  Stephen P. Boyd,et al.  Simple accurate expressions for planar spiral inductances , 1999, IEEE J. Solid State Circuits.

[8]  David R. Smith,et al.  Metamaterials and Negative Refractive Index , 2004, Science.

[9]  Francisco Medina,et al.  Artificial magnetic metamaterial design by using spiral resonators , 2004 .

[10]  K. Sarabandi,et al.  Magneto-dielectrics in electromagnetics: concept and applications , 2004, IEEE Transactions on Antennas and Propagation.

[11]  Francisco Falcone,et al.  Stop-band and band-pass characteristics in coplanar waveguides coupled to spiral resonators , 2004 .

[12]  M. Kafesaki,et al.  Investigation of magnetic resonances for different split-ring resonator parameters and designs , 2005 .

[13]  Xiaoliang Zhang,et al.  Design of an inductively decoupled microstrip array at 9.4 T. , 2006, Journal of magnetic resonance.

[14]  David R. Smith,et al.  Homogenization of metamaterials by field averaging (invited paper) , 2006 .

[15]  Joël Mispelter,et al.  NMR Probeheads for Biophysical and Biomedical Experiments: Theoretical Principles and Practical Guidelines , 2006 .

[16]  Ari Sihvola,et al.  Metamaterials in electromagnetics , 2007 .

[17]  A. Toscano,et al.  Equivalent-Circuit Models for the Design of Metamaterials Based on Artificial Magnetic Inclusions , 2007, IEEE Transactions on Microwave Theory and Techniques.

[18]  C. Simovski Bloch material parameters of magneto-dielectric metamaterials and the concept of Bloch lattices , 2007 .

[19]  Mario G. Silveirinha Metamaterial homogenization approach with application to the characterization of microstructured composites with negative parameters , 2007 .

[20]  A. Toscano,et al.  Design of Spiral and Multiple Split-Ring Resonators for the Realization of Miniaturized Metamaterial Samples , 2007, IEEE Transactions on Antennas and Propagation.

[21]  Ekmel Ozbay,et al.  Optimization and tunability of deep subwavelength resonators for metamaterial applications: complete enhanced transmission through a subwavelength aperture. , 2009, Optics express.

[22]  Derek Abbott,et al.  Compact electric-LC resonators for metamaterials. , 2010, Optics express.

[23]  Andrea Alu,et al.  First-principles homogenization theory for periodic metamaterials , 2011 .

[24]  F. Costa,et al.  Efficient Analysis of Frequency-Selective Surfaces by a Simple Equivalent-Circuit Model , 2012, IEEE Antennas and Propagation Magazine.

[25]  G. Manara,et al.  An Overview of Equivalent Circuit Modeling Techniques of Frequency Selective Surfaces and Metasurfaces , 2014 .

[26]  Yuhua Cheng,et al.  A New Analytical Calculation of the Mutual Inductance of the Coaxial Spiral Rectangular Coils , 2014, IEEE Transactions on Magnetics.

[27]  Ravi S. Menon,et al.  Design of a Parallel Transmit Head Coil at 7T With Magnetic Wall Distributed Filters , 2015, IEEE Transactions on Medical Imaging.

[28]  Ravi S. Menon,et al.  MRI RF Array Decoupling Method With Magnetic Wall Distributed Filters , 2015, IEEE Transactions on Medical Imaging.

[29]  Omar M. Ramahi,et al.  Metamaterial electromagnetic energy harvester with near unity efficiency , 2015 .

[30]  Clayton Fowler,et al.  A Metamaterial-Inspired Approach to RF Energy Harvesting , 2016 .

[31]  U. S. Pranav,et al.  Metamaterial Based Energy Harvester , 2016 .

[32]  S. Tretyakov Complex-media electromagnetics and metamaterials , 2017 .

[33]  N. Fontana,et al.  Distributed trap FSS filter for dual tuned RF MRI coil decoupling at 7.0T , 2017, 2017 International Conference on Electromagnetics in Advanced Applications (ICEAA).

[34]  M. Tosetti,et al.  Estimation of losses in strip and circular wire conductors of radiofrequency planar surface coil by using the finite element method , 2017 .

[35]  M. Tosetti,et al.  Radiofrequency planar surface coil for magnetic resonance: When the use of a circular wire gives a noticeable advantage with respect to a flat strip conductor? , 2018, Measurement.