Graph-based representations of point clouds

This paper introduces a skeletal representation, called Point Cloud Graph, that generalizes the definition of the Reeb graph to arbitrary point clouds sampled from m-dimensional manifolds embedded in the d-dimensional space. The proposed algorithm is easy to implement and the graph representation yields to an effective abstraction of the data. Finally, we present experimental results on point-sampled surfaces and volumetric data that show the robustness of the Point Cloud Graph to non-uniform point distributions and its usefulness for shape comparison.

[1]  Markus H. Gross,et al.  Shape modeling with point-sampled geometry , 2003, ACM Trans. Graph..

[2]  In-Kwon Lee,et al.  Curve reconstruction from unorganized points , 2000, Comput. Aided Geom. Des..

[3]  Yusu Wang,et al.  Eurographics Symposium on Geometry Processing 2009 Approximating Gradients for Meshes and Point Clouds via Diffusion Metric , 2022 .

[4]  Mikhail Belkin,et al.  Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples , 2006, J. Mach. Learn. Res..

[5]  Edwin R. Hancock,et al.  Pattern Vectors from Algebraic Graph Theory , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Sunghee Choi,et al.  The power crust , 2001, SMA '01.

[7]  Silvia Biasotti,et al.  Comparing Sets of 3D Digital Shapes Through Topological Structures , 2007, GbRPR.

[8]  Stéphane Lafon,et al.  Diffusion maps , 2006 .

[9]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[10]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[11]  Valerio Pascucci,et al.  Loops in Reeb Graphs of 2-Manifolds , 2004, Discret. Comput. Geom..

[12]  A. Adamson,et al.  Ray tracing point set surfaces , 2003, 2003 Shape Modeling International..

[13]  Tosiyasu L. Kunii,et al.  Surface coding based on Morse theory , 1991, IEEE Computer Graphics and Applications.

[14]  Stina Svensson,et al.  Curve skeletonization of surface-like objects in 3D images guided by voxel classification , 2002 .

[15]  Sunil Arya,et al.  An optimal algorithm for approximate nearest neighbor searching fixed dimensions , 1998, JACM.

[16]  R. Brubaker Models for the perception of speech and visual form: Weiant Wathen-Dunn, ed.: Cambridge, Mass., The M.I.T. Press, I–X, 470 pages , 1968 .

[17]  Alberto Del Bimbo,et al.  3D Mesh decomposition using Reeb graphs , 2009, Image Vis. Comput..

[18]  Markus H. Gross,et al.  Spectral processing of point-sampled geometry , 2001, SIGGRAPH.

[19]  Narendra Ahuja,et al.  A potential-based generalized cylinder representation , 2004, Comput. Graph..

[20]  Guillermo Sapiro,et al.  A Theoretical and Computational Framework for Isometry Invariant Recognition of Point Cloud Data , 2005, Found. Comput. Math..

[21]  Facundo Mémoli,et al.  Topological Methods for the Analysis of High Dimensional Data Sets and 3D Object Recognition , 2007, PBG@Eurographics.

[22]  Hong Qin,et al.  Piecewise C/sup 1/ continuous surface reconstruction of noisy point clouds via local implicit quadric regression , 2003, IEEE Visualization, 2003. VIS 2003..

[23]  Yusu Wang,et al.  A randomized O(m log m) time algorithm for computing Reeb graphs of arbitrary simplicial complexes , 2010, SCG.

[24]  Daniela Giorgi,et al.  Size functions for comparing 3D models , 2008, Pattern Recognit..

[25]  Daniela Giorgi,et al.  SHape REtrieval Contest 2007: Watertight Models Track , 2007 .

[26]  Tamal K. Dey,et al.  Provable surface reconstruction from noisy samples , 2006, Comput. Geom..

[27]  Tamal K. Dey,et al.  Defining and computing curve-skeletons with medial geodesic function , 2006, SGP '06.

[28]  Markus Ilg,et al.  Voronoi skeletons: theory and applications , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[29]  Tamal K. Dey,et al.  Approximate medial axis as a voronoi subcomplex , 2002, SMA '02.

[30]  Michael Garland,et al.  Harmonic functions for quadrilateral remeshing of arbitrary manifolds , 2005, Comput. Aided Geom. Des..

[31]  D. Levin,et al.  Mesh-Independent Surface Interpolation , 2004 .

[32]  Daniela Giorgi,et al.  Reeb graphs for shape analysis and applications , 2008, Theor. Comput. Sci..

[33]  M. Fatih Demirci,et al.  3D object retrieval using many-to-many matching of curve skeletons , 2005, International Conference on Shape Modeling and Applications 2005 (SMI' 05).

[34]  Markus H. Gross,et al.  Efficient simplification of point-sampled surfaces , 2002, IEEE Visualization, 2002. VIS 2002..

[35]  Daniela Giorgi,et al.  3D relevance feedback via multilevel relevance judgements , 2010, The Visual Computer.

[36]  Valerio Pascucci,et al.  Robust on-line computation of Reeb graphs: simplicity and speed , 2007, SIGGRAPH 2007.

[37]  D. Cohen-Or,et al.  Curve skeleton extraction from incomplete point cloud , 2009, SIGGRAPH 2009.

[38]  Ariel Shamir,et al.  On‐the‐fly Curve‐skeleton Computation for 3D Shapes , 2007, Comput. Graph. Forum.

[39]  Marc Alexa,et al.  Point set surfaces , 2001, Proceedings Visualization, 2001. VIS '01..

[40]  Kaleem Siddiqi,et al.  Medial Representations: Mathematics, Algorithms and Applications , 2008 .

[41]  David A. Forsyth,et al.  Generalizing motion edits with Gaussian processes , 2009, ACM Trans. Graph..

[42]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[43]  Michela Spagnuolo,et al.  Shape Analysis and Structuring , 2008 .

[44]  Kai Hormann,et al.  Surface Parameterization: a Tutorial and Survey , 2005, Advances in Multiresolution for Geometric Modelling.

[45]  Tony Tung,et al.  The Augmented Multiresolution Reeb Graph Approach for Content-based Retrieval of 3d Shapes , 2005, Int. J. Shape Model..

[46]  Guillermo Sapiro,et al.  Distance Functions and Geodesics on Submanifolds of Rd and Point Clouds , 2005, SIAM J. Appl. Math..

[47]  Hamid Krim,et al.  Statistics and Analysis of Shapes (Modeling and Simulation in Science, Engineering and Technology) , 2005 .

[48]  Marc Alexa,et al.  Approximating and Intersecting Surfaces from Points , 2003, Symposium on Geometry Processing.

[49]  Vijay Natarajan,et al.  Efficient algorithms for computing Reeb graphs , 2009, Comput. Geom..

[50]  J. Hart,et al.  Fair morse functions for extracting the topological structure of a surface mesh , 2004, SIGGRAPH 2004.

[51]  Franz Aurenhammer,et al.  A Novel Type of Skeleton for Polygons , 1996 .

[52]  Junjie Cao,et al.  Point Cloud Skeletons via Laplacian Based Contraction , 2010, 2010 Shape Modeling International Conference.

[53]  Ayellet Tal,et al.  Hierarchical mesh decomposition using fuzzy clustering and cuts , 2003, ACM Trans. Graph..

[54]  Silvia Biasotti,et al.  Extended Reeb Graphs for Surface Understanding and Description , 2000, DGCI.

[55]  Mauro R. Ruggeri,et al.  Approximating Geodesics on Point Set Surfaces , 2006, PBG@SIGGRAPH.

[56]  Balasubramanian Raman,et al.  Computing hierarchical curve-skeletons of 3D objects , 2005, The Visual Computer.

[57]  Tong-Yee Lee,et al.  Skeleton extraction by mesh contraction , 2008, SIGGRAPH 2008.

[58]  N. Amenta,et al.  Defining point-set surfaces , 2004, SIGGRAPH 2004.

[59]  Silvia Biasotti,et al.  Sub-part correspondence by structural descriptors of 3D shapes , 2006, Comput. Aided Des..

[60]  Luiz Velho,et al.  Moving least squares multiresolution surface approximation , 2003, 16th Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI 2003).

[61]  Taku Komura,et al.  Topology matching for fully automatic similarity estimation of 3D shapes , 2001, SIGGRAPH.

[62]  Sunghee Choi,et al.  The power crust, unions of balls, and the medial axis transform , 2001, Comput. Geom..

[63]  Mikhail Belkin,et al.  Constructing Laplace operator from point clouds in Rd , 2009, SODA.

[64]  Marco Attene,et al.  Hierarchical Structure Recovery of Point‐Sampled Surfaces , 2010, Comput. Graph. Forum.

[65]  Giuseppe Patanè,et al.  A Minimal Contouring Approach to the Computation of the Reeb Graph , 2009, IEEE Transactions on Visualization and Computer Graphics.

[66]  Valerio Pascucci,et al.  Loop surgery for volumetric meshes: Reeb graphs reduced to contour trees , 2009, IEEE Transactions on Visualization and Computer Graphics.

[67]  Mauro R. Ruggeri,et al.  Processing of textured surfaces represented as surfel sets: representation, compression and geodesic paths , 2005, IEEE International Conference on Image Processing 2005.

[68]  J. Paul Siebert,et al.  A functional-based segmentation of human body scans in arbitrary postures , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[69]  Marc Alexa,et al.  Progressive point set surfaces , 2003, TOGS.

[70]  Naoufel Werghi,et al.  A discrete Reeb graph approach for the segmentation of human body scans , 2003, Fourth International Conference on 3-D Digital Imaging and Modeling, 2003. 3DIM 2003. Proceedings..

[71]  Cohen-OrDaniel,et al.  Progressive point set surfaces , 2003 .