An Experimental Study on Hyper-heuristics and Exam Timetabling

Hyper-heuristics are proposed as a higher level of abstraction as compared to the metaheuristics. Hyper-heuristic methods deploy a set of simple heuristics and use only non-problem-specific data, such as fitness change or heuristic execution time. A typical iteration of a hyper-heuristic algorithm consists of two phases: the heuristic selection method and move acceptance. In this paper, heuristic selection mechanisms and move acceptance criteria in hyper-heuristics are analyzed in depth. Seven heuristic selection methods and five acceptance criteria are implemented. The performance of each selection and acceptance mechanism pair is evaluated on 14 well-known benchmark functions and 21 exam timetabling problem instances.

[1]  T. Wong,et al.  Final exam timetabling: a practical approach , 2002, IEEE CCECE2002. Canadian Conference on Electrical and Computer Engineering. Conference Proceedings (Cat. No.02CH37373).

[2]  Hans-Paul Schwefel,et al.  Numerical Optimization of Computer Models , 1982 .

[3]  Graham Kendall,et al.  Channel assignment in cellular communication using a great deluge hyper-heuristic , 2004, Proceedings. 2004 12th IEEE International Conference on Networks (ICON 2004) (IEEE Cat. No.04EX955).

[4]  Pascal Côté,et al.  TIMETABLING : A PRACTICAL APPROACH , 2002 .

[5]  K. Dejong,et al.  An analysis of the behavior of a class of genetic adaptive systems , 1975 .

[6]  Lawrence Davis,et al.  Genetic Algorithms and Simulated Annealing , 1987 .

[7]  Gilbert Laporte,et al.  Examination Timetabling: Algorithmic Strategies and Applications , 1994 .

[8]  Graham Kendall,et al.  A Tabu-Search Hyperheuristic for Timetabling and Rostering , 2003, J. Heuristics.

[9]  Kenneth Alan De Jong,et al.  An analysis of the behavior of a class of genetic adaptive systems. , 1975 .

[10]  Graham Kendall,et al.  A Hyperheuristic Approach to Scheduling a Sales Summit , 2000, PATAT.

[11]  Lawrence Davis,et al.  Bit-Climbing, Representational Bias, and Test Suite Design , 1991, ICGA.

[12]  Ender Özcan,et al.  Towards an XML-Based Standard for Timetabling Problems: TTML , 2005 .

[13]  Sanja Petrovic,et al.  Case-based heuristic selection for timetabling problems , 2006, J. Sched..

[14]  Graham Kendall,et al.  Hyper-Heuristics: An Emerging Direction in Modern Search Technology , 2003, Handbook of Metaheuristics.

[15]  A. Griewank Generalized descent for global optimization , 1981 .

[16]  Raymond S. K. Kwan,et al.  Distributed Choice Function Hyper-heuristics for Timetabling and Scheduling , 2004, PATAT.

[17]  Edmund K. Burke,et al.  Examination Timetabling in British Universities: A Survey , 1995, PATAT.

[18]  Edmund K. Burke,et al.  Practice and Theory of Automated Timetabling IV , 2002, Lecture Notes in Computer Science.

[19]  Alon Itai,et al.  On the Complexity of Timetable and Multicommodity Flow Problems , 1976, SIAM J. Comput..

[20]  David H. Ackley,et al.  An empirical study of bit vector function optimization , 1987 .

[21]  L. Darrell Whitley,et al.  Fundamental Principles of Deception in Genetic Search , 1990, FOGA.

[22]  F. Glover,et al.  Handbook of Metaheuristics , 2019, International Series in Operations Research & Management Science.

[23]  David E. Goldberg,et al.  Genetic Algorithms and Walsh Functions: Part I, A Gentle Introduction , 1989, Complex Syst..

[24]  Edmund K. Burke,et al.  Solving Examination Timetabling Problems through Adaption of Heuristic Orderings , 2004, Ann. Oper. Res..

[25]  Sanja Petrovic,et al.  A graph-based hyper-heuristic for educational timetabling problems , 2007, Eur. J. Oper. Res..

[26]  Carlos M. Fonseca,et al.  A Study of Examination Timetabling with Multiobjective Evolutionary Algorithms , 2001 .

[27]  Edmund K. Burke,et al.  Practice and Theory of Automated Timetabling V, 5th International Conference, PATAT 2004, Pittsburgh, PA, USA, August 18-20, 2004, Revised Selected Papers , 2005, PATAT.

[28]  Edmund K. Burke,et al.  A Memetic Algorithm for University Exam Timetabling , 1995, PATAT.

[29]  Edmund K. Burke,et al.  Practice and Theory of Automated Timetabling III , 2001, Lecture Notes in Computer Science.

[30]  David E. Goldberg,et al.  Genetic Algorithms and Walsh Functions: Part II, Deception and Its Analysis , 1989, Complex Syst..

[31]  Zbigniew Michalewicz,et al.  Handbook of Evolutionary Computation , 1997 .

[32]  Ender Özcan,et al.  Final exam scheduler - FES , 2005, 2005 IEEE Congress on Evolutionary Computation.

[33]  H. Terashima,et al.  Combinations of GAS and CSP strategies for solving examination timetabling problems , 1998 .

[34]  Graham Kendall,et al.  A Monte Carlo Hyper-Heuristic To Optimise Component Placement Sequencing For Multi Head Placement Machine , 2003 .

[35]  Luca Di Gaspero,et al.  Tabu Search Techniques for Examination Timetabling , 2000, PATAT.

[36]  Peter J. Stuckey,et al.  A Hybrid Algorithm for the Examination Timetabling Problem , 2002, PATAT.