Estimation of Single-Diode Photovoltaic Model Using the Differential Evolution Algorithm with Adaptive Boundaries

This study proposes a calculation methodology that determines the optimal boundary parameters of the single-diode photovoltaic model. It allows the calculation of the single-diode photovoltaic model when no reference parameter boundaries are available. The differential evolution algorithm, integrated with a step-by-step boundary definition module, is used to calculate the optimal parameters of the single-diode photovoltaic model, improving the performance of the classic algorithm compared with other studies. The solution is validated by comparing the results with well-established algorithms described in the state-of-the-art, and by estimating the five important points (cardinal points) of an IV curve, namely short-circuit, maximum power, and open circuit points, using a database composed of 100 solar photovoltaic modules. The results show that an optimal set of parameter boundaries enables the differential evolution algorithm to minimize the error of the estimated cardinal points. Moreover, the proposed calculus methodology is capable of producing high-performance response photovoltaic models for different technologies and rated powers.

[1]  J. Nelson The physics of solar cells , 2003 .

[2]  Armin G. Aberle,et al.  Electrical characterization method for bifacial photovoltaic modules , 2014 .

[3]  Francisco Gordillo,et al.  Parameters identification of PV solar cells and modules using flexible particle swarm optimization algorithm , 2019, Energy.

[4]  Vicente Galiano,et al.  In-depth analysis of single-diode model parameters from manufacturer’s datasheet , 2021 .

[5]  K. O'Donnell,et al.  Temperature dependence of semiconductor band gaps , 1991 .

[6]  Mirza Qutab Baig,et al.  Evaluation of solar module equivalent models under real operating conditions—A review , 2020 .

[7]  Y. Errami,et al.  Parameter estimation of photovoltaic modules using iterative method and the Lambert W function: A comparative study , 2016 .

[8]  Gianpaolo Vitale,et al.  Photovoltaic Sources: Modeling and Emulation , 2012 .

[9]  William A. Beckman,et al.  Improvement and validation of a model for photovoltaic array performance , 2006 .

[10]  Gaston H. Gonnet,et al.  On the LambertW function , 1996, Adv. Comput. Math..

[11]  Marcelo Gradella Villalva,et al.  Comprehensive Approach to Modeling and Simulation of Photovoltaic Arrays , 2009, IEEE Transactions on Power Electronics.

[12]  Tatjana V. Sibalija,et al.  A soft computing-based study on WEDM optimization in processing Inconel 625 , 2021, Neural Computing and Applications.

[13]  Chunquan Li,et al.  An Improved Brain Storming Optimization Algorithm for Estimating Parameters of Photovoltaic Models , 2019, IEEE Access.

[14]  Ponnuthurai Nagaratnam Suganthan,et al.  Parameter estimation of solar cells using datasheet information with the application of an adaptive differential evolution algorithm , 2019, Renewable Energy.

[15]  Carlos Andrés Ramos-Paja,et al.  Photovoltaic Sources Modeling , 2017 .

[16]  Rishabh Dev Shukla,et al.  A New Parameter Estimation Method of Solar Photovoltaic , 2018, IEEE Journal of Photovoltaics.

[17]  Taehyeon Kim,et al.  Bifacial solar photovoltaics – A technology review , 2016 .

[18]  G. Petrone,et al.  Symbolic algebra for the calculation of the series and parallel resistances in PV module model , 2013, 2013 International Conference on Clean Electrical Power (ICCEP).

[19]  Joshua S. Stein,et al.  A review of crystalline silicon bifacial photovoltaic performance characterisation and simulation , 2019, Energy & Environmental Science.

[20]  Hany M. Hasanien,et al.  Parameters estimation of single‐ and multiple‐diode photovoltaic model using whale optimisation algorithm , 2018, IET Renewable Power Generation.

[21]  Aron Dobos,et al.  An Improved Coefficient Calculator for the California Energy Commission 6 Parameter Photovoltaic Module Model , 2012 .

[22]  Debashisha Jena,et al.  Modeling of photovoltaic system for uniform and non-uniform irradiance: A critical review , 2015 .

[23]  Y. P. Varshni Temperature dependence of the energy gap in semiconductors , 1967 .

[24]  Hegazy Rezk,et al.  Optimal parameter design of fractional order control based INC-MPPT for PV system , 2018 .

[25]  M. A. Abido,et al.  Seven-parameter PV model estimation using Differential Evolution , 2018 .

[26]  Kashif Ishaque,et al.  An improved modeling method to determine the model parameters of photovoltaic (PV) modules using differential evolution (DE) , 2011 .

[27]  Anupriya Gogna,et al.  Metaheuristics: review and application , 2013, J. Exp. Theor. Artif. Intell..

[28]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[29]  Kashif Ishaque,et al.  Cell modelling and model parameters estimation techniques for photovoltaic simulator application: A review , 2015 .

[30]  Brian P. Dougherty,et al.  Evaluation and Validation of Equivalent Circuit Photovoltaic Solar Cell Performance Models , 2011 .

[31]  Sedat Keleş,et al.  Spatial forest planning: A review , 2005 .

[32]  Vishnu Prasad,et al.  Economic dispatch using particle swarm optimization: A review , 2009 .

[33]  A. Kapoor,et al.  Exact analytical solutions of the parameters of real solar cells using Lambert W-function , 2004 .