Sliding Mode Control of Magnetic Levitation Systems Using Hybrid Extended Kalman Filter

This paper presents an approach to control a magnetic levitation system with uncertainty in the dynamics and the measurements. First, Sliding Mode Controller (SMC) is applied to the magnetic levitation system. Then, Hybrid Extended Kalman Filter (HEKF) is used to increase the robustness of the magnetic levitation system to uncertainties. The efficiency of such combined control method is verified by simulation results and performance parameters. Key words : Magnetic levitation system; Sliding mode control; Hybrid extended kalman filter

[1]  Masayuki Fujita,et al.  Experiments on the H ∞ disturbance attenuation control of a magnetic suspension system , 1990 .

[2]  Faa-Jeng Lin,et al.  Hybrid controller with recurrent neural network for magnetic levitation system , 2005, IEEE Transactions on Magnetics.

[3]  Tzuu-Hseng S. Li,et al.  Design of an EP-based fuzzy sliding-mode control for a magnetic ball suspension system , 2007 .

[4]  Masayuki Fujita,et al.  Μ -synthesis of an Electromagnetic Suspension System , 1995, IEEE Trans. Autom. Control..

[5]  Dan Simon,et al.  Optimal State Estimation: Kalman, H∞, and Nonlinear Approaches , 2006 .

[6]  D. M. Rote,et al.  A review of dynamic stability of repulsive-force maglev suspension systems , 1998 .

[7]  Chin-Teng Lin,et al.  Nonlinear System Control Using Adaptive Neural Fuzzy Networks Based on a Modified Differential Evolution , 2009, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[8]  Ahmed El Hajjaji,et al.  Modeling and nonlinear control of magnetic levitation systems , 2001, IEEE Trans. Ind. Electron..

[9]  Gregory D. Buckner Intelligent bounds on modeling uncertainties: applications to sliding mode control of a magnetic levitation system , 2001, 2001 IEEE International Conference on Systems, Man and Cybernetics. e-Systems and e-Man for Cybernetics in Cyberspace (Cat.No.01CH37236).

[10]  I. Miller Probability, Random Variables, and Stochastic Processes , 1966 .

[11]  John Chiasson,et al.  Linear and nonlinear state-space controllers for magnetic levitation , 1996, Int. J. Syst. Sci..

[12]  D. Cho,et al.  Sliding mode and classical controllers in magnetic levitation systems , 1993, IEEE Control Systems.

[13]  Mohamed Zribi,et al.  Sliding mode control of a magnetic levitation system , 2004, Mathematical Problems in Engineering.

[14]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[15]  D. L. Trumper,et al.  Linearizing control of magnetic suspension systems , 1997, IEEE Trans. Control. Syst. Technol..

[16]  Chao-Ming Huang,et al.  Adaptive nonlinear control of repulsive Maglev suspension systems , 1999, Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No.99CH36328).

[17]  Feng Zhao,et al.  Phase-Space Nonlinear Control Toolbox: The Maglev Experience , 1997, Hybrid Systems.

[18]  F. Moon,et al.  Superconducting levitation : applications to bearings and magnetic transportation , 1994 .

[19]  J. L. Roux An Introduction to the Kalman Filter , 2003 .

[20]  Zi-Jiang Yang,et al.  Robust nonlinear control of a magnetic levitation system via backstepping approach , 1998, Proceedings of the 37th SICE Annual Conference. International Session Papers.

[21]  Mohinder S. Grewal,et al.  Kalman Filtering: Theory and Practice Using MATLAB , 2001 .

[22]  Faa-Jeng Lin,et al.  Intelligent Sliding-Mode Control Using RBFN for Magnetic Levitation System , 2007, IEEE Transactions on Industrial Electronics.

[23]  M. Ono,et al.  Japan's superconducting Maglev train , 2002 .