On a Recurrence involving Stirling Numbers
暂无分享,去创建一个
We count the number Z ( n ) of (not necessarily maximal) chains from 0 to 1 in the partition lattice of an n -set. This function satisfies the recurrence Z ( n ) = ∑ k − 1 n − 1 S ( n , k ) Z ( k ) where S ( n , k ) denotes the Stirling numbers of the second kind. We find the asymptotic order of magnitude of Z ( n ).
[1] E. Bender. Asymptotic Methods in Enumeration , 1974 .
[2] L. Harper. Stirling Behavior is Asymptotically Normal , 1967 .
[3] G. Rota. On the foundations of combinatorial theory I. Theory of Möbius Functions , 1964 .
[4] L. C. Hsu. Note on an Asymptotic Expansion of the $n$th Difference of Zero , 1948 .