Decay of quantum states in some exactly soluble models

Abstract To illustrate the decay of quantum states, we compute exactly the elements of the evolution operator, exp(-itH), and solve the energy-eigenvalue problem for some simple model hamiltonian systems with discrete spectra. Then, the behavior of these solutions in limits for which continuum parts appear in the energy spectra is studied. We find that in such limits the similarity transformation diagonalizing the hamiltonian becomes ill-defined, the evolution operator becomes non-unitary and the complicated quasi-periodic time-evolution characteristic of discrete-spectrum systems is displaced to the infinite future; the remaining decays of states for the limiting systems are sometimes, but not always, complete.

[1]  Dynamics of systems with large number of degrees of freedom and generalized transformation theory. , 1970, Proceedings of the National Academy of Sciences of the United States of America.

[2]  S. Swain,et al.  A general approach to nonequilibrium quantum statistics , 1971 .

[3]  Herbert S. Wilf,et al.  Mathematics for the Physical Sciences , 1976 .

[4]  I. Prigogine,et al.  Dynamical and statistical descriptions of N-body systems , 1969 .

[5]  K. Friedrichs On the perturbation of continuous spectra , 1948 .

[6]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[7]  G. Doetsch Handbuch der Laplace-Transformation , 1950 .

[8]  G. Höhler Über die Exponentialnäherung beim Teilchenzerfall , 1958 .

[9]  J. J. Kozak,et al.  Relaxation to Quantum‐Statistical Equilibrium of the Wigner‐Weisskopf Atom in a One‐Dimensional Radiation Field. III. The Quantum‐Mechanical Solution , 1971 .

[10]  E. Wigner,et al.  Berechnung der natürlichen Linienbreite auf Grund der Diracschen Lichttheorie , 1930 .

[11]  Joshua Jortner,et al.  Intramolecular Radiationless Transitions , 1968 .

[12]  E. Wigner,et al.  Über die natürliche Linienbreite in der Strahlung des harmonischen Oszillators , 1930 .

[13]  Eytan Barouch,et al.  Statistical Mechanics of the XY Model. III , 1970 .

[14]  J. Gillis,et al.  Integrals of Bessel Functions , 1963 .

[15]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[16]  E. Lieb,et al.  Two Soluble Models of an Antiferromagnetic Chain , 1961 .

[17]  H. Kaufman,et al.  Table of Laplace transforms , 1966 .

[18]  J. L. Pietenpol SIMPLE SOLUBLE MODEL FOR THE DECAY OF AN UNSTABLE STATE. , 1967 .