Replica shuffled iterative decoding

Replica shuffled versions of iterative decoders of turbo codes, low-density parity-check codes and turbo product codes are presented. The proposed schemes converge faster than standard and previously proposed "shuffled" approaches. Simulations show that the new schedules offer good performance versus complexity/latency trade-offs

[1]  David J. C. MacKay,et al.  Good Error-Correcting Codes Based on Very Sparse Matrices , 1997, IEEE Trans. Inf. Theory.

[2]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[3]  Juntan Zhang,et al.  Shuffled belief propagation decoding , 2002, Conference Record of the Thirty-Sixth Asilomar Conference on Signals, Systems and Computers, 2002..

[4]  D. Divsalar,et al.  Multiple turbo codes for deep-space communications , 1995 .

[5]  John Cocke,et al.  Optimal decoding of linear codes for minimizing symbol error rate (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[6]  H. Kfir,et al.  Parallel versus sequential updating for belief propagation decoding , 2002, cond-mat/0207185.

[7]  Payam Pakzad,et al.  Abstract—two Decoding Schedules and the Corresponding Serialized Architectures for Low-density Parity-check (ldpc) , 2001 .

[8]  Ramesh Pyndiah,et al.  Near-optimum decoding of product codes: block turbo codes , 1998, IEEE Trans. Commun..

[9]  Alain Glavieux,et al.  Reflections on the Prize Paper : "Near optimum error-correcting coding and decoding: turbo codes" , 1998 .

[10]  Steven W. McLaughlin,et al.  A parallel decoder for low latency decoding of turbo product codes , 2002, IEEE Communications Letters.

[11]  Marc P. C. Fossorier,et al.  Shuffled iterative decoding , 2005, IEEE Transactions on Communications.

[12]  Joachim Hagenauer,et al.  Iterative decoding of binary block and convolutional codes , 1996, IEEE Trans. Inf. Theory.