Cybersecurity in an Era with Quantum Computers: Will We Be Ready?

Organizations must understand their specific risks and plan for their systems to be resilient to quantum attacks. Assessment is based on three quantities: the security shelf life of the information assets, the migration time to systems designed to resist quantum attacks, and the time remaining before quantum computers break the security.

[1]  Jan Bouda,et al.  SECOQC White Paper on Quantum Key Distribution and Cryptography , 2007, ArXiv.

[2]  W. T. Tutte FISH and I , 2000 .

[3]  S. Poletto,et al.  Detecting bit-flip errors in a logical qubit using stabilizer measurements , 2014, Nature Communications.

[4]  Jian-Wei Pan,et al.  10-Qubit Entanglement and Parallel Logic Operations with a Superconducting Circuit. , 2017, Physical review letters.

[5]  Andrew W. Cross,et al.  Demonstration of a quantum error detection code using a square lattice of four superconducting qubits , 2015, Nature Communications.

[6]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[7]  Gilles Brassard,et al.  Tight bounds on quantum searching , 1996, quant-ph/9605034.

[8]  Douglas Stebila,et al.  The Case for Quantum Key Distribution , 2009, QuantumComm.

[9]  L. DiCarlo,et al.  Scalable Quantum Circuit and Control for a Superconducting Surface Code , 2016, 1612.08208.

[10]  Michele Mosca,et al.  A New Spin on Quantum Cryptography: Avoiding Trapdoors and Embracing Public Keys , 2011, PQCrypto.

[11]  David P. DiVincenzo,et al.  Quantum computing: An IBM perspective , 2011, IBM J. Res. Dev..

[12]  John M. Martinis,et al.  State preservation by repetitive error detection in a superconducting quantum circuit , 2015, Nature.

[13]  S. Vanstone,et al.  Computing Logarithms in Finite Fields of Characteristic Two , 1984 .

[14]  R. J. Schoelkopf,et al.  Multilayer microwave integrated quantum circuits for scalable quantum computing , 2015, npj Quantum Information.

[15]  Xiaoyun Wang,et al.  How to Break MD5 and Other Hash Functions , 2005, EUROCRYPT.

[16]  T. Kuhn,et al.  The Structure of Scientific Revolutions. , 1964 .

[17]  Kenneth G. Paterson,et al.  Quantum cryptography: a practical information security perspective , 2004, IACR Cryptol. ePrint Arch..

[18]  C. T. Earnest,et al.  Thermocompression bonding technology for multilayer superconducting quantum circuits , 2017, 1705.02435.

[19]  Adi Shamir,et al.  Weaknesses in the Key Scheduling Algorithm of RC4 , 2001, Selected Areas in Cryptography.

[20]  R. Schoelkopf,et al.  Superconducting Circuits for Quantum Information: An Outlook , 2013, Science.

[21]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[22]  Graeme Smith,et al.  Oversimplifying quantum factoring , 2013, Nature.