Interaction-driven giant thermopower in magic-angle twisted bilayer graphene

[1]  H. R. Krishnamurthy,et al.  Breakdown of semiclassical description of thermoelectricity in near-magic angle twisted bilayer graphene , 2021, Nature communications.

[2]  Y. Oreg,et al.  Theory of Correlated Insulators and Superconductivity in Twisted Bilayer Graphene. , 2021, Physical review letters.

[3]  Kenji Watanabe,et al.  Isospin Pomeranchuk effect in twisted bilayer graphene , 2021, Nature.

[4]  Z. Akšamija,et al.  Very high thermoelectric power factor near magic angle in twisted bilayer graphene , 2021, 2D Materials.

[5]  T. Taniguchi,et al.  Chern insulators, van Hove singularities and topological flat bands in magic-angle twisted bilayer graphene , 2021, Nature Materials.

[6]  Kenji Watanabe,et al.  Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene , 2021, Nature.

[7]  Kenji Watanabe,et al.  Correlation-driven topological phases in magic-angle twisted bilayer graphene , 2021, Nature.

[8]  Kenji Watanabe,et al.  Competing Zero-Field Chern Insulators in Superconducting Twisted Bilayer Graphene. , 2020, Physical review letters.

[9]  A. Yacoby,et al.  Unconventional sequence of correlated Chern insulators in magic-angle twisted bilayer graphene , 2021, Nature Physics.

[10]  T. Taniguchi,et al.  Misorientation-Controlled Cross-Plane Thermoelectricity in Twisted Bilayer Graphene. , 2020, Physical review letters.

[11]  A. Mirlin,et al.  Vanishing Thermal Equilibration for Hole-Conjugate Fractional Quantum Hall States in Graphene. , 2020, Physical review letters.

[12]  Kenji Watanabe,et al.  Interplay of filling fraction and coherence in symmetry broken graphene p-n junction , 2020, Communications Physics.

[13]  Y. Oreg,et al.  Entropic evidence for a Pomeranchuk effect in magic-angle graphene , 2020, Nature.

[14]  P. Kim,et al.  High-bandwidth, variable-resistance differential noise thermometry. , 2020, The Review of scientific instruments.

[15]  E. Andrei,et al.  Graphene bilayers with a twist , 2020, Nature Materials.

[16]  D. Englund,et al.  Ultrasensitive Calorimetric Measurements of the Electronic Heat Capacity of Graphene. , 2020, Nano letters.

[17]  Kenji Watanabe,et al.  Symmetry-broken Chern insulators and Rashba-like Landau-level crossings in magic-angle bilayer graphene , 2020, Nature Physics.

[18]  Kenji Watanabe,et al.  Strongly correlated Chern insulators in magic-angle twisted bilayer graphene , 2020, Nature.

[19]  H. R. Krishnamurthy,et al.  Excess entropy and breakdown of semiclassical description of thermoelectricity in twisted bilayer graphene close to half filling , 2020, 2004.12356.

[20]  Kenji Watanabe,et al.  Nematicity and competing orders in superconducting magic-angle graphene , 2020, Science.

[21]  Xiaodong Xu,et al.  Superconductivity without insulating states in twisted bilayer graphene stabilized by monolayer WSe$_2$ , 2020, 2002.03003.

[22]  Y. Oreg,et al.  Cascade of phase transitions and Dirac revivals in magic-angle graphene , 2019, Nature.

[23]  Kenji Watanabe,et al.  Cascade of electronic transitions in magic-angle twisted bilayer graphene , 2019, Nature.

[24]  Kenji Watanabe,et al.  Independent superconductors and correlated insulators in twisted bilayer graphene , 2019, Nature Physics.

[25]  A. Vishwanath,et al.  Ground State and Hidden Symmetry of Magic-Angle Graphene at Even Integer Filling , 2019, 1911.02045.

[26]  T. Taniguchi,et al.  Mapping the twist-angle disorder and Landau levels in magic-angle graphene , 2019, Nature.

[27]  T. Taniguchi,et al.  Large linear-in-temperature resistivity in twisted bilayer graphene , 2019, Nature Physics.

[28]  T. Taniguchi,et al.  Maximized electron interactions at the magic angle in twisted bilayer graphene , 2018, Nature.

[29]  J. Zhu,et al.  Intrinsic quantized anomalous Hall effect in a moiré heterostructure , 2019, Science.

[30]  Kenji Watanabe,et al.  Spectroscopic signatures of many-body correlations in magic-angle twisted bilayer graphene , 2019, Nature.

[31]  Kenji Watanabe,et al.  Charge order and broken rotational symmetry in magic-angle twisted bilayer graphene , 2019, Nature.

[32]  Kenji Watanabe,et al.  Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene , 2019, Nature.

[33]  T. Taniguchi,et al.  Universal quantized thermal conductance in graphene , 2019, Science Advances.

[34]  Kenji Watanabe,et al.  Strange Metal in Magic-Angle Graphene with near Planckian Dissipation. , 2019, Physical review letters.

[35]  M. Kastner,et al.  Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene , 2019, Science.

[36]  G. Refael,et al.  Author Correction: Electronic correlations in twisted bilayer graphene near the magic angle , 2019, Nature Physics.

[37]  O. Vafek,et al.  Strong Coupling Phases of Partially Filled Twisted Bilayer Graphene Narrow Bands. , 2018, Physical review letters.

[38]  D. Graf,et al.  Tuning superconductivity in twisted bilayer graphene , 2018, Science.

[39]  T. Koretsune,et al.  Maximally Localized Wannier Orbitals and the Extended Hubbard Model for Twisted Bilayer Graphene , 2018, Physical Review X.

[40]  Y. Schattner,et al.  Phases of a phenomenological model of twisted bilayer graphene , 2018, Physical Review B.

[41]  A. Vishwanath,et al.  Origin of Mott Insulating Behavior and Superconductivity in Twisted Bilayer Graphene , 2018, Physical Review X.

[42]  Takashi Taniguchi,et al.  Unconventional superconductivity in magic-angle graphene superlattices , 2018, Nature.

[43]  E. Kaxiras,et al.  Correlated insulator behaviour at half-filling in magic-angle graphene superlattices , 2018, Nature.

[44]  Kenji Watanabe,et al.  High thermoelectricpower factor in graphene/hBN devices , 2016, Proceedings of the National Academy of Sciences.

[45]  P. Kim,et al.  Enhanced Thermoelectric Power in Graphene: Violation of the Mott Relation by Inelastic Scattering. , 2016, Physical review letters.

[46]  B. Hong,et al.  Length-dependent thermal conductivity in suspended single-layer graphene , 2014, Nature Communications.

[47]  G. Fève,et al.  Supercollision cooling in undoped graphene , 2012, Nature Physics.

[48]  K. Schwab,et al.  Ultrasensitive and Wide-Bandwidth Thermal Measurements of Graphene at Low Temperatures , 2012, 1202.5737.

[49]  P. Moon,et al.  Energy spectrum and quantum Hall effect in twisted bilayer graphene , 2012, 1202.4365.

[50]  Ting-Kuo Lee,et al.  Enhanced thermoelectric power in dual-gated bilayer graphene. , 2011, Physical review letters.

[51]  R. Bistritzer,et al.  Moiré bands in twisted double-layer graphene , 2010, Proceedings of the National Academy of Sciences.

[52]  Dong-Keun Ki,et al.  Thermoelectric transport of massive Dirac fermions in bilayer graphene , 2010, 1005.4739.

[53]  N. Ong,et al.  Thermopower and Nernst effect in graphene in a magnetic field , 2008, 0812.2866.

[54]  P. Kim,et al.  Thermoelectric and magnetothermoelectric transport measurements of graphene. , 2008, Physical review letters.

[55]  L. Dumoulin,et al.  Observation of the Nernst signal generated by fluctuating Cooper pairs , 2006, cond-mat/0607587.

[56]  N. Ong,et al.  Nernst effect in high-Tc superconductors , 2005, cond-mat/0510470.

[57]  D. Huse,et al.  Gaussian superconducting fluctuations, thermal transport, and the nernst effect. , 2002, Physical review letters.

[58]  S. Uchida,et al.  Vortex-like excitations and the onset of superconducting phase fluctuation in underdoped La2-xSrxCuO4 , 2000, Nature.

[59]  G. Kotliar,et al.  Thermoelectric Response Near the Density Driven Mott Transition , 1998, cond-mat/9911136.

[60]  B. R. Patton,et al.  Fluctuation thermopower above the superconducting transition temperature , 1995 .

[61]  N. Mott,et al.  Observation of Anderson Localization in an Electron Gas , 1969 .

[62]  Kenji Watanabe,et al.  Quantum-critical continuum in magic-angle twisted bilayer graphene , 2021 .

[63]  M. Salamon,et al.  CORRIGENDUM: An anomalous peak in the thermopower of Y1Ba2Cu3O7- delta crystals , 1989 .