Interface materials for organic solar cells

The progress in the development and understanding of interfacial materials for organic photovoltaics (OPV) is reviewed. The proper choice of interface materials is a must for highly efficient and stable OPV devices and has become a significant part of the OPV research today. Interface materials are either non-conducting, semiconducting or conducting layers which not only provide selective contacts for carriers of one sort, but can also determine the polarity of OPV devices, affect the open-circuit voltage, and act as optical spacers or protective layers. In this review both inorganic and organic interface materials are discussed with respect to their function in the OPV device.

[1]  Tsung-Hsun Lee,et al.  An inverted polymer photovoltaic cell with increased air stability obtained by employing novel hole/electron collecting layers , 2009 .

[2]  F. Krebs,et al.  Stability/degradation of polymer solar cells , 2008 .

[3]  Sungeun Park,et al.  Effects of intrinsic ZnO buffer layer based on P3HT/PCBM organic solar cells with Al-doped ZnO electrode , 2009 .

[4]  Yi Cui,et al.  Solution-processed metal nanowire mesh transparent electrodes. , 2008, Nano letters.

[5]  William R. Salaneck,et al.  Conductivity, morphology, interfacial chemistry, and stability of poly(3,4‐ethylene dioxythiophene)–poly(styrene sulfonate): A photoelectron spectroscopy study , 2003 .

[6]  K. Leo,et al.  n‐Type Doping of Organic Thin Films Using Cationic Dyes , 2004 .

[7]  Martijn Lenes,et al.  Fullerene Bisadducts for Enhanced Open‐Circuit Voltages and Efficiencies in Polymer Solar Cells , 2008 .

[8]  J. Bernède,et al.  MoO3 surface passivation of the transparent anode in organic solar cells using ultrathin films , 2009 .

[9]  W. R. Salaneck,et al.  Transition between energy level alignment regimes at a low band gap polymer-electrode interfaces , 2006 .

[10]  Li Cd,et al.  Photoinduced Electron Transfer at Molecule−Metal Interfaces , 2006 .

[11]  Jing-Shun Huang,et al.  Solution-processed vanadium oxide as an anode interlayer for inverted polymer solar cells hybridized with ZnO nanorods , 2009 .

[12]  C. Grimes,et al.  High efficiency double heterojunction polymer photovoltaic cells using highly ordered TiO2 nanotube arrays , 2007 .

[13]  S. Barlow,et al.  N-type doping of an electron-transport material by controlled gas-phase incorporation of cobaltocene , 2006 .

[14]  Alex K.-Y. Jen,et al.  Polymer Solar Cells That Use Self‐Assembled‐Monolayer‐ Modified ZnO/Metals as Cathodes , 2008 .

[15]  K. Seki,et al.  ENERGY LEVEL ALIGNMENT AND INTERFACIAL ELECTRONIC STRUCTURES AT ORGANIC/METAL AND ORGANIC/ORGANIC INTERFACES , 1999 .

[16]  M.J.A. de Voigt,et al.  Stability of the interface between indium-tin-oxide and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) in polymer light-emitting diodes , 2000 .

[17]  Wenjing Tian,et al.  Investigation on polymer anode design for flexible polymer solar cells , 2008 .

[18]  F. Chen,et al.  High‐Conductivity Poly(3,4‐ethylenedioxythiophene):Poly(styrene sulfonate) Film and Its Application in Polymer Optoelectronic Devices , 2005 .

[19]  Takayuki Kuwabara,et al.  Inverted type bulk-heterojunction organic solar cell using electrodeposited titanium oxide thin films as electron collector electrode , 2009 .

[20]  Stephen R. Forrest,et al.  Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells , 2001 .

[21]  Amy M. Ballantyne,et al.  Effects of thickness and thermal annealing of the PEDOT:PSS layer on the performance of polymer solar cells , 2009 .

[22]  Xindong Zhang,et al.  Role of tungsten oxide in inverted polymer solar cells , 2009 .

[23]  Yan Wang,et al.  Boron-doped zinc oxide thin films for large-area solar cells grown by metal organic chemical vapor deposition , 2007 .

[24]  L. Vayssieres Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions , 2003 .

[25]  Karl Leo,et al.  Pyronin B as a donor for n-type doping of organic thin films , 2003 .

[26]  Garry Rumbles,et al.  Optimal negative electrodes for poly(3-hexylthiophene): [6,6]-phenyl C61-butyric acid methyl ester bulk heterojunction photovoltaic devices , 2008 .

[27]  S. T. Lee,et al.  Application of metal-doped organic layer both as exciton blocker and optical spacer for organic photovoltaic devices , 2006 .

[28]  Wei Zhao,et al.  Influence of chemical doping on the performance of organic photovoltaic cells , 2009 .

[29]  A J Heeger,et al.  Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. , 2007, Nature materials.

[30]  Alex K.-Y. Jen,et al.  Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer , 2008 .

[31]  J. Jang,et al.  Organic light-emitting diode with polyaniline-poly(styrene sulfonate) as a hole injection layer , 2008 .

[32]  Alex K.-Y. Jen,et al.  Spraycoating of silver nanoparticle electrodes for inverted polymer solar cells , 2009 .

[33]  Yang Yang,et al.  High efficiency polymer solar cells with vertically modulated nanoscale morphology , 2009, Nanotechnology.

[34]  William R. Salaneck,et al.  Energy‐Level Alignment at Organic/Metal and Organic/Organic Interfaces , 2009 .

[35]  Xiong Gong,et al.  New Architecture for High‐Efficiency Polymer Photovoltaic Cells Using Solution‐Based Titanium Oxide as an Optical Spacer , 2006 .

[36]  S. H. Park,et al.  Titanium suboxide as an optical spacer in polymer solar cells , 2009 .

[37]  Alex K.-Y. Jen,et al.  Self-assembled monolayer modified ZnO/metal bilayer cathodes for polymer/fullerene bulk-heterojunction solar cells , 2008 .

[38]  C. Tang,et al.  Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode , 1997 .

[39]  Alex K.-Y. Jen,et al.  Interfacial modification to improve inverted polymer solar cells , 2008 .

[40]  T. Wen,et al.  A facile synthesis of sulfonated poly (diphenylamine) and the application as a novel hole injection layer in polymer light emitting diodes , 2008 .

[41]  R. Friend,et al.  Morphological and electronic consequences of modifications to the polymer anode ‘PEDOT:PSS’ , 2005 .

[42]  Yang Yang,et al.  Synthesis, characterization, and photovoltaic properties of a low band gap polymer based on silole-containing polythiophenes and 2,1,3-benzothiadiazole. , 2008, Journal of the American Chemical Society.

[43]  William R. Salaneck,et al.  The effects of solvents on the morphology and sheet resistance in poly(3,4-ethylenedioxythiophene)–polystyrenesulfonic acid (PEDOT–PSS) films , 2003 .

[44]  Gang Li,et al.  Recent Progress in Polymer Solar Cells: Manipulation of Polymer:Fullerene Morphology and the Formation of Efficient Inverted Polymer Solar Cells , 2009 .

[45]  N. E. Coates,et al.  Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing , 2007, Science.

[46]  Martin Pfeiffer,et al.  Efficient organic solar cells based on a double p-i-n architecture using doped wide-gap transport layers , 2005 .

[47]  Kahn,et al.  Chemistry and electronic properties of metal-organic semiconductor interfaces: Al, Ti, In, Sn, Ag, and Au on PTCDA. , 1996, Physical review. B, Condensed matter.

[48]  Valentin D. Mihailetchi,et al.  Device Physics of Polymer:Fullerene Bulk Heterojunction Solar Cells , 2007 .

[49]  S. Shaheen,et al.  Bright blue organic light-emitting diode with improved color purity using a LiF/Al cathode , 1998 .

[50]  Julian Carter,et al.  Operating stability of light-emitting polymer diodes based on poly(p-phenylene vinylene) , 1997 .

[51]  Nelson E. Coates,et al.  Bulk heterojunction solar cells with internal quantum efficiency approaching 100 , 2009 .

[52]  Gang Li,et al.  Doping of the Metal Oxide Nanostructure and its Influence in Organic Electronics , 2009 .

[53]  M. Yokoyama,et al.  Electrical shorting of organic photovoltaic films resulting from metal migration , 2006 .

[54]  A. Cravino Origin of the open circuit voltage of donor-acceptor solar cells: Do polaronic energy levels play a role? , 2007 .

[55]  K. Seki,et al.  Acridine orange base as a dopant for n doping of C60 thin films , 2006 .

[56]  Garry Rumbles,et al.  Pathways for the degradation of organic photovoltaic P3HT:PCBM based devices , 2008 .

[57]  Reghu Menon,et al.  Conformational modification of conducting polymer chains by solvents: Small-angle X-ray scattering study , 2006 .

[58]  M. Konagai,et al.  Preparation of boron-doped ZnO thin films by photo-atomic layer deposition , 2001 .

[59]  Xingwang Zhang,et al.  Optical absorption edge characteristics of cubic boron nitride thin films , 1999 .

[60]  A. Heeger,et al.  Flexible light-emitting diodes made from soluble conducting polymers , 1992, Nature.

[61]  Jae Hoon Jung,et al.  Enhancement of electrical conductivity of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) by a change of solvents , 2002 .

[62]  H. Michaelson The work function of the elements and its periodicity , 1977 .

[63]  J. Park,et al.  Control of the electrode work function and active layer morphology via surface modification of indium tin oxide for high efficiency organic photovoltaics , 2007 .

[64]  Jenny Nelson,et al.  Using Self‐Assembling Dipole Molecules to Improve Charge Collection in Molecular Solar Cells , 2006 .

[65]  Ronn Andriessen,et al.  Printable anodes for flexible organic solar cell modules , 2004 .

[66]  Martin Pfeiffer,et al.  Organic p-i-n solar cells , 2004 .

[67]  A. Kahn,et al.  Controlled p doping of the hole-transport molecular material N,N′-diphenyl-N,N′-bis(1-naphthyl)-1,1′-biphenyl-4,4′-diamine with tetrafluorotetracyanoquinodimethane , 2003 .

[68]  Jenny Nelson,et al.  Morphology evolution via self-organization and lateral and vertical diffusion in polymer:fullerene solar cell blends. , 2008, Nature materials.

[69]  Reuben T. Collins,et al.  Hybrid photovoltaic devices of polymer and ZnO nanofiber composites , 2006 .

[70]  Stephen R. Forrest,et al.  Lithium doping of semiconducting organic charge transport materials , 2001 .

[71]  Gang Li,et al.  Highly efficient inverted polymer solar cell by low temperature annealing of Cs2CO3 interlayer , 2008 .

[72]  Mm Martijn Wienk,et al.  The use of ZnO as optical spacer in polymer solar cells: Theoretical and experimental study , 2007 .

[73]  A. Kahn,et al.  Electronic structure and current injection in zinc phthalocyanine doped with tetrafluorotetracyanoquinodimethane: Interface versus bulk effects , 2002 .

[74]  Christoph J. Brabec,et al.  High Photovoltaic Performance of a Low‐Bandgap Polymer , 2006 .

[75]  T. Klapwijk,et al.  Indium contamination from the indium–tin–oxide electrode in polymer light‐emitting diodes , 1996 .

[76]  R. Friend,et al.  Nature of Non-emissive Black Spots in Polymer Light-Emitting Diodes by In-Situ Micro-Raman Spectroscopy , 2002 .

[77]  C. Brabec,et al.  Effect of LiF/metal electrodes on the performance of plastic solar cells , 2002 .

[78]  K. Yoo,et al.  Organic Photovoltaic Devices with Ga-doped ZnO$_{2}$ electrode , 2007 .

[79]  Liangbing Hu,et al.  Organic solar cells with carbon nanotube network electrodes , 2006 .

[80]  Electric Characteristics of Li2O-Doped TiO2 Nanocrystalline Film and Its Application to Dye-Sensitized Solar Cells , 2009 .

[81]  Jin Young Kim,et al.  Air‐Stable Polymer Electronic Devices , 2007 .

[82]  C. Brabec,et al.  Plastic Solar Cells , 2001 .

[83]  Chun-Wei Chen,et al.  Transparent and conducting electrodes for organic electronics from reduced graphene oxide , 2008 .

[84]  Adam J. Moulé,et al.  An optical spacer is no panacea for light collection in organic solar cells , 2009 .

[85]  Kuo-Chuan Ho,et al.  Electrochemical characterization of the solvent-enhanced conductivity of poly(3,4-ethylenedioxythiophene) and its application in polymer solar cells , 2009 .

[86]  Martin Pfeiffer,et al.  Low-voltage organic electroluminescent devices using pin structures , 2002 .

[87]  Yi-Kai Lin,et al.  Modified buffer layers for polymer photovoltaic devices , 2007 .

[88]  M. Matsumura,et al.  Effect of Al/LiF Cathodes on emission efficiency of organic EL devices , 1998 .

[89]  C. Brabec,et al.  2.5% efficient organic plastic solar cells , 2001 .

[90]  Christoph J. Brabec,et al.  Highly efficient inverted organic photovoltaics using solution based titanium oxide as electron selective contact , 2006 .

[91]  George G. Malliaras,et al.  Hydrofluoroethers as Orthogonal Solvents for the Chemical Processing of Organic Electronic Materials , 2008 .

[92]  Vishal Shrotriya,et al.  Transition metal oxides as the buffer layer for polymer photovoltaic cells , 2006 .

[93]  Gang Li,et al.  Vertical Phase Separation in Poly(3‐hexylthiophene): Fullerene Derivative Blends and its Advantage for Inverted Structure Solar Cells , 2009 .

[94]  Gang Li,et al.  A Semi‐transparent Plastic Solar Cell Fabricated by a Lamination Process , 2008 .

[95]  O. Inganäs,et al.  Nano-structured conducting polymer network based on PEDOT-PSS , 2001 .

[96]  Wei Zhao,et al.  Decamethylcobaltocene as an efficient n-dopant in organic electronic materials and devices , 2008 .

[97]  Alan J. Heeger,et al.  Polymer light-emitting diodes with polyethylene dioxythiophene–polystyrene sulfonate as the transparent anode , 1997 .

[98]  Franco Cacialli,et al.  LiF/Al cathodes and the effect of LiF thickness on the device characteristics and built-in potential of polymer light-emitting diodes , 2000 .

[99]  Christoph J. Brabec,et al.  The impact of water vapor transmission rate on the lifetime of flexible polymer solar cells , 2008 .

[100]  M. Lux‐Steiner,et al.  On the function of a bathocuproine buffer layer in organic photovoltaic cells , 2006 .

[101]  Monica Lira-Cantu,et al.  Vertically-aligned nanostructures of ZnO for excitonic solar cells: a review , 2009 .

[102]  Zheng-Hong Lu,et al.  Chemical structure of Al/LiF/Alq interfaces in organic light-emitting diodes , 2002 .

[103]  B. Rech,et al.  Texture etched ZnO:Al coated glass substrates for silicon based thin film solar cells , 1999 .

[104]  Vishal Shrotriya,et al.  Efficient inverted polymer solar cells , 2006 .

[105]  Guo-Qiang Lo,et al.  An inverted organic solar cell employing a sol-gel derived ZnO electron selective layer and thermal evaporated MoO3 hole selective layer , 2008 .

[106]  Christoph J. Brabec,et al.  Design Rules for Donors in Bulk‐Heterojunction Solar Cells—Towards 10 % Energy‐Conversion Efficiency , 2006 .

[107]  L. Borucki,et al.  Defect generation and diffusion mechanisms in Al and Al–Cu , 1999 .

[108]  Seunghyup Yoo,et al.  Improving performance of organic solar cells using amorphous tungsten oxides as an interfacial buffer layer on transparent anodes , 2009 .

[109]  Max Shtein,et al.  Transparent and conductive electrodes based on unpatterned, thin metal films , 2008 .

[110]  H. Okuzaki,et al.  Effects of solvent on carrier transport in poly(3,4- ethylenedioxythiophene)/poly(4-styrenesulfonate) , 2005 .

[111]  Christoph J. Brabec,et al.  Interface modification for highly efficient organic photovoltaics , 2008 .

[112]  Stelios A. Choulis,et al.  Thermal degradation mechanisms of PEDOT:PSS , 2009 .

[113]  Marie Angelopoulos,et al.  Polymeric anodes for improved polymer light-emitting diode performance , 1997 .

[114]  Olle Inganäs,et al.  Optical anisotropy in thin films of poly(3,4-ethylenedioxythiophene)–poly(4-styrenesulfonate) , 2002 .

[115]  William R. Salaneck,et al.  Formation of the Interfacial Dipole at Organic‐Organic Interfaces: C60/Polymer Interfaces , 2007 .

[116]  Wai-Yeung Wong,et al.  Metallated conjugated polymers as a new avenue towards high-efficiency polymer solar cells. , 2007, Nature materials.

[117]  A. J. Heeger,et al.  Polyaniline as a transparent electrode for polymer light‐emitting diodes: Lower operating voltage and higher efficiency , 1994 .

[118]  K. Walzer,et al.  Highly efficient organic devices based on electrically doped transport layers. , 2007, Chemical reviews.

[119]  Stephen R. Forrest,et al.  Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes , 2000 .

[120]  Stephen R. Forrest,et al.  Gallium-doped zinc oxide films as transparent electrodes for organic solar cell applications , 2007 .

[121]  W. R. Salaneck,et al.  Characterization of the interface dipole at organic/ metal interfaces. , 2002, Journal of the American Chemical Society.

[122]  C. Brabec,et al.  Origin of the Open Circuit Voltage of Plastic Solar Cells , 2001 .

[123]  Martin Pfeiffer,et al.  LOW VOLTAGE ORGANIC LIGHT EMITTING DIODES FEATURING DOPED PHTHALOCYANINE AS HOLE TRANSPORT MATERIAL , 1998 .

[124]  F. Touwslager,et al.  Morphology and conductivity of PEDOT/PSS films studied by scanning-tunneling microscopy , 2004 .

[125]  Toshio Matsumoto,et al.  Bright organic electroluminescent devices having a metal-doped electron-injecting layer , 1998 .

[126]  Osamu Yoshikawa,et al.  High performance polythiophene/fullerene bulk-heterojunction solar cell with a TiOx hole blocking layer , 2007 .

[127]  William R. Salaneck,et al.  Photoelectron Spectroscopy of the Contact between the Cathode and the Active Layers in Plastic Solar Cells: The Role of LiF , 2005 .

[128]  Y. Yoshida,et al.  Mg-doped C60 thin film as improved n-type organic semiconductor for a solar cell , 2004 .

[129]  T. Yoon,et al.  Hybrid inverted bulk heterojunction solar cells with nanoimprinted TiO2 nanopores , 2009 .

[130]  Mats Andersson,et al.  Polymer Photovoltaic Cells with Conducting Polymer Anodes , 2002 .

[131]  Michael Niggemann,et al.  Organic solar cells using inverted layer sequence , 2005 .

[132]  C. Guillén,et al.  ITO/metal/ITO multilayer structures based on Ag and Cu metal films for high-performance transparent electrodes , 2008 .

[133]  Stephen R. Forrest,et al.  Asymmetric tandem organic photovoltaic cells with hybrid planar-mixed molecular heterojunctions , 2004 .

[134]  Olle Inganäs,et al.  Electrode Grids for ITO Free Organic Photovoltaic Devices , 2007 .

[135]  Kazuhito Hashimoto,et al.  Efficiency enhancement of polymer photovoltaic devices hybridized with ZnO nanorod arrays by the introduction of a vanadium oxide buffer layer , 2008 .

[136]  Sean E. Shaheen,et al.  Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer , 2006 .

[137]  Xianjie Liu,et al.  Leuco Crystal Violet as a Dopant for n-Doping of Organic Thin Films of Fullerene C60 , 2004 .

[138]  V. Mihailetchi,et al.  Cathode dependence of the open-circuit voltage of polymer:fullerene bulk heterojunction solar cells , 2003 .