Implicit Elitism in Genetic Search

We introduce a notion of implicit elitism derived from the mutation operator in genetic algorithms. Probability of mutation less than 1/l (l being the chromosome size) along with probability of crossover less than one induces implicit elitism in genetic search. It implicitly transfers a few chromosomes with above-average fitness unperturbed to the population at next generation, thus maintaining the progress of genetic search. Experiments conducted on one-max and 0/1 knapsack problems testify its efficacy. Implicit elitism in combination with traditional explicit elitism enhances the search capability of genetic algorithms.

[1]  Joe Suzuki,et al.  A Markov chain analysis on simple genetic algorithms , 1995, IEEE Trans. Syst. Man Cybern..

[2]  L. Darrell Whitley,et al.  Properties of Gray and Binary Representations , 2004, Evolutionary Computation.

[3]  A. E. Eiben,et al.  On Evolutionary Exploration and Exploitation , 1998, Fundam. Informaticae.

[4]  David E. Goldberg,et al.  The Gambler's Ruin Problem, Genetic Algorithms, and the Sizing of Populations , 1999, Evolutionary Computation.

[5]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[6]  Achim Rettinger,et al.  Intelligent exploration for genetic algorithms: using self-organizing maps in evolutionary computation , 2008, GECCO '05.

[7]  Zbigniew Michalewicz,et al.  Genetic algorithms + data structures = evolution programs (2nd, extended ed.) , 1994 .

[8]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[9]  Zbigniew Michalewicz,et al.  Parameter control in evolutionary algorithms , 1999, IEEE Trans. Evol. Comput..

[10]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[11]  David B. Fogel,et al.  Unearthing a Fossil from the History of Evolutionary Computation , 1998, Fundam. Informaticae.

[12]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[13]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[14]  Sheldon M. Ross Introduction to Probability Models. , 1995 .

[15]  A. K. Bhatia,et al.  Tackling 0/1 knapsack problem with gene induction , 2003, Soft Comput..

[16]  Dirk Thierens,et al.  Scalability Problems of Simple Genetic Algorithms , 1999, Evolutionary Computation.

[17]  C. A. Murthy,et al.  epsilon-Optimal Stopping Time for Genetic Algorithms , 1998, Fundam. Informaticae.

[18]  John N. Tsitsiklis,et al.  Introduction to Probability , 2002 .

[19]  Zbigniew Michalewicz,et al.  Parameter Control in Evolutionary Algorithms , 2007, Parameter Setting in Evolutionary Algorithms.