Electroencephalograph (EEG) data is a recording of brain electrical activities, which is commonly used in emotion prediction. To obtain promising accuracy, it is important to perform a suitable data preprocessing; however, different works employed different procedures and features. In this paper, we aim to investigate various feature extraction techniques for EEG signals. To obtain the best choice, there are four factors investigated in the experiment: (i) the number of channels, (ii) signal transformation methods, (iii) feature representations, and (iv) feature transformation techniques. Support Vector Machine (SVM) is chosen to be our baseline classifier due to its promising performance. The experiments were conducted on the DEAP benchmark dataset. The results showed that the prediction on EEG signals from 10 channels represented by the band power one-minute features gave the best accuracy and F1.
[1]
F. L. D. Silva,et al.
EEG signal processing
,
2000,
Clinical Neurophysiology.
[2]
Chih-Jen Lin,et al.
LIBSVM: A library for support vector machines
,
2011,
TIST.
[3]
Pasin Israsena,et al.
Emotion classification using minimal EEG channels and frequency bands
,
2013,
The 2013 10th International Joint Conference on Computer Science and Software Engineering (JCSSE).
[4]
Thierry Pun,et al.
DEAP: A Database for Emotion Analysis ;Using Physiological Signals
,
2012,
IEEE Transactions on Affective Computing.
[5]
Pasin Israsena,et al.
Real-Time EEG-Based Happiness Detection System
,
2013,
TheScientificWorldJournal.