FlexMolds

We present FlexMolds, a novel computational approach to automatically design flexible, reusable molds that, once 3D printed, allow us to physically fabricate, by means of liquid casting, multiple copies of complex shapes with rich surface details and complex topology. The approach to design such flexible molds is based on a greedy bottom-up search of possible cuts over an object, evaluating for each possible cut the feasibility of the resulting mold. We use a dynamic simulation approach to evaluate candidate molds, providing a heuristic to generate forces that are able to open, detach, and remove a complex mold from the object it surrounds. We have tested the approach with a number of objects with nontrivial shapes and topologies.

[1]  Charlie C. L. Wang,et al.  3D printing oriented design: geometry and optimization , 2014, SIGGRAPH ASIA Courses.

[2]  N. Venkata Reddy,et al.  Automatic determination of parting directions, parting lines and surfaces for two-piece permanent molds , 2009 .

[3]  Miguel A. Otaduy,et al.  Position-based Methods for the Simulation of Solid Objects in Computer Graphics , 2013, Eurographics.

[4]  Daniel Cohen-Or,et al.  Approximate pyramidal shape decomposition , 2014, ACM Trans. Graph..

[5]  David Bommes,et al.  Dual loops meshing , 2012, ACM Trans. Graph..

[6]  Wojciech Matusik,et al.  Computational tools for 3D printing , 2015, SIGGRAPH Courses.

[7]  Rupinder Singh,et al.  Three Dimensional Printing for Casting Applications: A State of Art Review and Future Perspectives , 2009 .

[8]  Narendra Ahuja,et al.  Gross motion planning—a survey , 1992, CSUR.

[9]  Ariel Shamir,et al.  A survey on Mesh Segmentation Techniques , 2008, Comput. Graph. Forum.

[10]  Xionghui Zhou,et al.  Feature extraction from freeform molded parts for moldability analysis , 2010 .

[11]  Steven J. Gortler,et al.  Geometry images , 2002, SIGGRAPH.

[12]  Huamin Wang,et al.  Level-set-based partitioning and packing optimization of a printable model , 2015, ACM Trans. Graph..

[13]  Benjamin Keinert,et al.  Spherical fibonacci mapping , 2015, ACM Trans. Graph..

[14]  Wojciech Matusik,et al.  Computing and Fabricating Multiplanar Models , 2013, Comput. Graph. Forum.

[15]  Eitan Grinspun,et al.  Flexible Developable Surfaces , 2012, Comput. Graph. Forum.

[16]  Paolo Cignoni,et al.  Field-aligned mesh joinery , 2014, ACM Trans. Graph..

[17]  Mitul Saha,et al.  Motion planning for robotic manipulation of deformable linear objects , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[18]  Matthias Müller,et al.  Position based dynamics , 2007, J. Vis. Commun. Image Represent..

[19]  Alla Sheffer,et al.  D‐Charts: Quasi‐Developable Mesh Segmentation , 2005, Comput. Graph. Forum.

[20]  Somlak Wannarumon,et al.  Reviews of Computer-Aided Technologies for Jewelry Design and Casting , 2011 .

[21]  Mathieu Desbrun,et al.  Discrete shells , 2003, SCA '03.

[22]  Marco Actis Grande,et al.  Computer Simulation of the investment casting process: widening of the filling step , 2007 .

[23]  Konrad Polthier,et al.  Perfect Matching Quad Layouts for Manifold Meshes , 2015, SGP '15.

[24]  Paolo Cignoni,et al.  Tracing Field‐Coherent Quad Layouts , 2016, Comput. Graph. Forum.

[25]  Tamal K. Dey,et al.  A new technique to compute polygonal schema for 2-manifolds with application to null-homotopy detection , 1994, SCG '94.

[26]  Denis Zorin,et al.  Robust field-aligned global parametrization , 2014, ACM Trans. Graph..

[27]  Marc Alexa,et al.  Approximating Free‐form Geometry with Height Fields for Manufacturing , 2015, Comput. Graph. Forum.

[28]  Alan C. Lin,et al.  Automatic generation of mold-piece regions and parting curves for complex CAD models in multi-piece mold design , 2014, Comput. Aided Des..

[29]  Jernej Barbic,et al.  FEM simulation of 3D deformable solids: a practitioner's guide to theory, discretization and model reduction , 2012, SIGGRAPH '12.

[30]  Johannes Wallner,et al.  Interactive Design of Developable Surfaces , 2016, ACM Trans. Graph..

[31]  Pierre Alliez,et al.  Variational shape approximation , 2004, ACM Trans. Graph..

[32]  Mark Pauly,et al.  Fabrication‐aware Design with Intersecting Planar Pieces , 2013, Comput. Graph. Forum.

[33]  Marc Alexa,et al.  crdbrd: Shape Fabrication by Sliding Planar Slices , 2012, Comput. Graph. Forum.

[34]  P. Jiménez,et al.  Survey on model-based manipulation planning of deformable objects , 2012 .

[35]  Enrico Puppo,et al.  Extraction of the Quad Layout of a Triangle Mesh Guided by Its Curve Skeleton , 2015, ACM Trans. Graph..

[36]  D. Cohen-Or,et al.  Dapper , 2015, ACM Trans. Graph..

[37]  Markus H. Gross,et al.  Computational Design of Rubber Balloons , 2012, Comput. Graph. Forum.

[38]  Eitan Grinspun,et al.  Designing inflatable structures , 2014, ACM Trans. Graph..

[39]  Anselm Grundhöfer,et al.  Computational thermoforming , 2016, ACM Trans. Graph..

[40]  Paolo Cignoni,et al.  Almost Isometric Mesh Parameterization through Abstract Domains , 2010, IEEE Transactions on Visualization and Computer Graphics.

[41]  Bruno Lévy,et al.  Geometry-aware direction field processing , 2009, TOGS.

[42]  Mark Pauly,et al.  Projective dynamics , 2014, ACM Trans. Graph..

[43]  D. Bommes,et al.  Mixed-integer quadrangulation , 2009, SIGGRAPH 2009.

[44]  Daniele Panozzo,et al.  Simple quad domains for field aligned mesh parametrization , 2011, ACM Trans. Graph..

[45]  N. Carr,et al.  PackMerger: A 3D Print Volume Optimizer , 2014, Comput. Graph. Forum.

[46]  Doug L. James,et al.  Real time physics: class notes , 2008, SIGGRAPH '08.

[47]  Wojciech Matusik,et al.  Chopper: partitioning models into 3D-printable parts , 2012, ACM Trans. Graph..