An efficient Peaceman–Rachford splitting method for constrained TGV-shearlet-based MRI reconstruction
暂无分享,去创建一个
David Z.W. Wang | Wenxing Zhang | Tingting Wu | Yuehong Sun | Tingting Wu | Wenxing Zhang | David Z. W. Wang | Yuehong Sun
[1] M. Lustig,et al. Compressed Sensing MRI , 2008, IEEE Signal Processing Magazine.
[2] Gilles Aubert,et al. Efficient Schemes for Total Variation Minimization Under Constraints in Image Processing , 2009, SIAM J. Sci. Comput..
[3] Jonathan Eckstein. Augmented Lagrangian and Alternating Direction Methods for Convex Optimization: A Tutorial and Some Illustrative Computational Results , 2012 .
[4] J. Hogg. Magnetic resonance imaging. , 1994, Journal of the Royal Naval Medical Service.
[5] Bingsheng He,et al. Customized proximal point algorithms for linearly constrained convex minimization and saddle-point problems : a uniform approach , 2011 .
[6] Xiaoming Yuan,et al. A Proximal Strictly Contractive Peaceman-Rachford Splitting Method for Convex Programming with Applications to Imaging , 2015, SIAM J. Imaging Sci..
[7] Jianhong Shen,et al. Deblurring images: Matrices, spectra, and filtering , 2007, Math. Comput..
[8] Tom Goldstein,et al. The Split Bregman Method for L1-Regularized Problems , 2009, SIAM J. Imaging Sci..
[9] Emmanuel J. Candès,et al. Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.
[10] S. Frick,et al. Compressed Sensing , 2014, Computer Vision, A Reference Guide.
[11] Wang-Q Lim,et al. Edge analysis and identification using the continuous shearlet transform , 2009 .
[12] Kristian Bredies,et al. Inverse problems with second-order Total Generalized Variation constraints , 2020, ArXiv.
[13] Emmanuel J. Candès,et al. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.
[14] Wang-Q Lim,et al. Compactly supported shearlets are optimally sparse , 2010, J. Approx. Theory.
[15] Michael K. Ng,et al. Solving Constrained Total-variation Image Restoration and Reconstruction Problems via Alternating Direction Methods , 2010, SIAM J. Sci. Comput..
[16] Michael B. Wakin. Sparse Image and Signal Processing: Wavelets, Curvelets, Morphological Diversity (Starck, J.-L., et al; 2010) [Book Reviews] , 2011, IEEE Signal Processing Magazine.
[17] Bingsheng He,et al. A Strictly Contractive Peaceman-Rachford Splitting Method for Convex Programming , 2014, SIAM J. Optim..
[18] Wotao Yin,et al. A New Detail-Preserving Regularization Scheme , 2014, SIAM J. Imaging Sci..
[19] José M. Bioucas-Dias,et al. An Augmented Lagrangian Approach to the Constrained Optimization Formulation of Imaging Inverse Problems , 2009, IEEE Transactions on Image Processing.
[20] T. Pock,et al. Second order total generalized variation (TGV) for MRI , 2011, Magnetic resonance in medicine.
[21] L. Rudin,et al. Nonlinear total variation based noise removal algorithms , 1992 .
[22] Yunmei Chen,et al. A novel method and fast algorithm for MR image reconstruction with significantly under-sampled data , 2010 .
[23] Heinz H. Bauschke,et al. Convex Analysis and Monotone Operator Theory in Hilbert Spaces , 2011, CMS Books in Mathematics.
[24] Xiaoming Yuan,et al. A customized Douglas–Rachford splitting algorithm for separable convex minimization with linear constraints , 2013, Numerische Mathematik.
[25] Bingsheng He,et al. Generalized alternating direction method of multipliers: new theoretical insights and applications , 2015, Math. Program. Comput..
[26] Shunsuke Ono,et al. Decorrelated Vectorial Total Variation , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.
[27] Roland Glowinski,et al. On Alternating Direction Methods of Multipliers: A Historical Perspective , 2014, Modeling, Simulation and Optimization for Science and Technology.
[28] Wotao Yin,et al. Bregman Iterative Algorithms for (cid:2) 1 -Minimization with Applications to Compressed Sensing ∗ , 2008 .
[29] Demetrio Labate,et al. Optimally Sparse Multidimensional Representation Using Shearlets , 2007, SIAM J. Math. Anal..
[30] 丸山 徹. Convex Analysisの二,三の進展について , 1977 .
[31] D. Donoho,et al. Sparse MRI: The application of compressed sensing for rapid MR imaging , 2007, Magnetic resonance in medicine.
[32] Stephen P. Boyd,et al. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..
[33] Karl Kunisch,et al. Total Generalized Variation , 2010, SIAM J. Imaging Sci..
[34] Patrick L. Combettes,et al. Proximal Splitting Methods in Signal Processing , 2009, Fixed-Point Algorithms for Inverse Problems in Science and Engineering.
[35] Wang-Q Lim,et al. Sparse multidimensional representation using shearlets , 2005, SPIE Optics + Photonics.
[36] Bo Zhou,et al. An ADMM algorithm for second-order TV-based MR image reconstruction , 2014, Numerical Algorithms.
[37] Paul Tseng,et al. A coordinate gradient descent method for nonsmooth separable minimization , 2008, Math. Program..
[38] R. Glowinski,et al. Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .
[39] D. Labate,et al. The Construction of Smooth Parseval Frames of Shearlets , 2013 .
[40] Li Shen,et al. Inexact indefinite proximal ADMMs for 2-block separable convex programs and applications to 4-block DNNSDPs , 2015, 1505.04519.
[41] B. Mercier,et al. A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .
[42] J. Moreau. Proximité et dualité dans un espace hilbertien , 1965 .