An efficient Peaceman–Rachford splitting method for constrained TGV-shearlet-based MRI reconstruction

ABSTRACT As a fundamental application of compressive sensing, magnetic resonance imaging (MRI) can be efficiently achievable by exploiting fewer k-space measurements. In this paper, we propose a constrained total generalized variation and shearlet transform-based model for MRI reconstruction, which is usually more undemanding and practical to identify appropriate tradeoffs than its unconstrained counterpart. The proposed model can be facilely and efficiently solved by the strictly contractive Peaceman–Rachford splitting method, which generally outperforms some state-of-the-art algorithms when solving separable convex programming. Numerical simulations demonstrate that the sharp edges and grainy details in magnetic resonance images can be well reconstructed from the under-sampling data.

[1]  M. Lustig,et al.  Compressed Sensing MRI , 2008, IEEE Signal Processing Magazine.

[2]  Gilles Aubert,et al.  Efficient Schemes for Total Variation Minimization Under Constraints in Image Processing , 2009, SIAM J. Sci. Comput..

[3]  Jonathan Eckstein Augmented Lagrangian and Alternating Direction Methods for Convex Optimization: A Tutorial and Some Illustrative Computational Results , 2012 .

[4]  J. Hogg Magnetic resonance imaging. , 1994, Journal of the Royal Naval Medical Service.

[5]  Bingsheng He,et al.  Customized proximal point algorithms for linearly constrained convex minimization and saddle-point problems : a uniform approach , 2011 .

[6]  Xiaoming Yuan,et al.  A Proximal Strictly Contractive Peaceman-Rachford Splitting Method for Convex Programming with Applications to Imaging , 2015, SIAM J. Imaging Sci..

[7]  Jianhong Shen,et al.  Deblurring images: Matrices, spectra, and filtering , 2007, Math. Comput..

[8]  Tom Goldstein,et al.  The Split Bregman Method for L1-Regularized Problems , 2009, SIAM J. Imaging Sci..

[9]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[10]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[11]  Wang-Q Lim,et al.  Edge analysis and identification using the continuous shearlet transform , 2009 .

[12]  Kristian Bredies,et al.  Inverse problems with second-order Total Generalized Variation constraints , 2020, ArXiv.

[13]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[14]  Wang-Q Lim,et al.  Compactly supported shearlets are optimally sparse , 2010, J. Approx. Theory.

[15]  Michael K. Ng,et al.  Solving Constrained Total-variation Image Restoration and Reconstruction Problems via Alternating Direction Methods , 2010, SIAM J. Sci. Comput..

[16]  Michael B. Wakin Sparse Image and Signal Processing: Wavelets, Curvelets, Morphological Diversity (Starck, J.-L., et al; 2010) [Book Reviews] , 2011, IEEE Signal Processing Magazine.

[17]  Bingsheng He,et al.  A Strictly Contractive Peaceman-Rachford Splitting Method for Convex Programming , 2014, SIAM J. Optim..

[18]  Wotao Yin,et al.  A New Detail-Preserving Regularization Scheme , 2014, SIAM J. Imaging Sci..

[19]  José M. Bioucas-Dias,et al.  An Augmented Lagrangian Approach to the Constrained Optimization Formulation of Imaging Inverse Problems , 2009, IEEE Transactions on Image Processing.

[20]  T. Pock,et al.  Second order total generalized variation (TGV) for MRI , 2011, Magnetic resonance in medicine.

[21]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[22]  Yunmei Chen,et al.  A novel method and fast algorithm for MR image reconstruction with significantly under-sampled data , 2010 .

[23]  Heinz H. Bauschke,et al.  Convex Analysis and Monotone Operator Theory in Hilbert Spaces , 2011, CMS Books in Mathematics.

[24]  Xiaoming Yuan,et al.  A customized Douglas–Rachford splitting algorithm for separable convex minimization with linear constraints , 2013, Numerische Mathematik.

[25]  Bingsheng He,et al.  Generalized alternating direction method of multipliers: new theoretical insights and applications , 2015, Math. Program. Comput..

[26]  Shunsuke Ono,et al.  Decorrelated Vectorial Total Variation , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[27]  Roland Glowinski,et al.  On Alternating Direction Methods of Multipliers: A Historical Perspective , 2014, Modeling, Simulation and Optimization for Science and Technology.

[28]  Wotao Yin,et al.  Bregman Iterative Algorithms for (cid:2) 1 -Minimization with Applications to Compressed Sensing ∗ , 2008 .

[29]  Demetrio Labate,et al.  Optimally Sparse Multidimensional Representation Using Shearlets , 2007, SIAM J. Math. Anal..

[30]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[31]  D. Donoho,et al.  Sparse MRI: The application of compressed sensing for rapid MR imaging , 2007, Magnetic resonance in medicine.

[32]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[33]  Karl Kunisch,et al.  Total Generalized Variation , 2010, SIAM J. Imaging Sci..

[34]  Patrick L. Combettes,et al.  Proximal Splitting Methods in Signal Processing , 2009, Fixed-Point Algorithms for Inverse Problems in Science and Engineering.

[35]  Wang-Q Lim,et al.  Sparse multidimensional representation using shearlets , 2005, SPIE Optics + Photonics.

[36]  Bo Zhou,et al.  An ADMM algorithm for second-order TV-based MR image reconstruction , 2014, Numerical Algorithms.

[37]  Paul Tseng,et al.  A coordinate gradient descent method for nonsmooth separable minimization , 2008, Math. Program..

[38]  R. Glowinski,et al.  Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .

[39]  D. Labate,et al.  The Construction of Smooth Parseval Frames of Shearlets , 2013 .

[40]  Li Shen,et al.  Inexact indefinite proximal ADMMs for 2-block separable convex programs and applications to 4-block DNNSDPs , 2015, 1505.04519.

[41]  B. Mercier,et al.  A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .

[42]  J. Moreau Proximité et dualité dans un espace hilbertien , 1965 .