Analytic study on nonlinear variants of the RLW and the PHI-four equations

Abstract An analytic study on nonlinear variants of the RLW and the PHI-four equations is presented. We first use the sine–cosine method to derive compact and noncompact exact solutions for these variants. Second we employ the tanh method to confirm the obtained physical structures. The results emphasize the power of the methods used.

[1]  M. Wadati Introduction to solitons , 2001 .

[2]  J. Bona,et al.  Model equations for long waves in nonlinear dispersive systems , 1972, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[3]  Abdul-Majid Wazwaz,et al.  Compactons dispersive structures for variants of the K(n,n) and the KP equations , 2002 .

[4]  Abdul-Majid Wazwaz,et al.  An analytic study of compactons structures in a class of nonlinear dispersive equations , 2003, Math. Comput. Simul..

[5]  Abdul-Majid Wazwaz,et al.  Compact and noncompact structures in a class of nonlinearly dispersive equations , 2003, Math. Comput. Simul..

[6]  W. Malfliet,et al.  The tanh method: a tool for solving certain classes of nonlinear evolution and wave equations , 2004 .

[7]  Abdul-Majid Wazwaz,et al.  General solutions with solitary patterns for the defocusing branch of the nonlinear dispersive K(n, n) equations in higher dimensional spaces , 2002, Appl. Math. Comput..

[8]  Hyman,et al.  Compactons: Solitons with finite wavelength. , 1993, Physical review letters.

[9]  Abdul-Majid Wazwaz,et al.  Compactons and solitary patterns structures for variants of the KdV and the KP equations , 2003, Appl. Math. Comput..

[10]  Abdul-Majid Wazwaz,et al.  The tanh method for traveling wave solutions of nonlinear equations , 2004, Appl. Math. Comput..

[11]  Abdul-Majid Wazwaz,et al.  A sine-cosine method for handlingnonlinear wave equations , 2004, Math. Comput. Model..

[12]  Abdul-Majid Wazwaz,et al.  A computational approach to soliton solutions of the Kadomtsev-Petviashvili equation , 2001, Appl. Math. Comput..

[13]  Abdul-Majid Wazwaz,et al.  Partial differential equations : methods and applications , 2002 .

[14]  M. Wadati,et al.  The Modified Korteweg-de Vries Equation , 1973 .

[15]  W. Hereman,et al.  The tanh method: II. Perturbation technique for conservative systems , 1996 .

[16]  W. Malfliet Solitary wave solutions of nonlinear wave equations , 1992 .

[17]  M. Ablowitz,et al.  Solitons, Nonlinear Evolution Equations and Inverse Scattering , 1992 .

[18]  A. Wazwaz A study of nonlinear dispersive equations with solitary-wave solutions having compact support , 2001 .

[19]  W. Hereman,et al.  Solitary wave solutions of nonlinear evolution and wave equations using a direct method and MACSYMA , 1990 .

[20]  Abdul-Majid Wazwaz,et al.  New solitary-wave special solutions with compact support for the nonlinear dispersive K(m, n) equations , 2002 .

[21]  J. Dye,et al.  An inverse scattering scheme for the regularized long-wave equation , 2000 .

[22]  N. Zabusky,et al.  Interaction of "Solitons" in a Collisionless Plasma and the Recurrence of Initial States , 1965 .