Size effects on concrete fracture energy: dimensional transition from order to disorder

The nominal fracture energy of concrete structures is constant for relatively large structures, whereas it increases with size for relatively small structures. If the energy dissipation space is modeled as a monofractal domain, with a non-integer dimension comprised between 2 and 3, a unique slope in the bilogarithmic fracture energy versus size diagram is found, as was stated in a previous paper [1]. On the other hand, when the scale range extends over more than one order of magnitude, a continuous transition from slope+1/2 to zero slope may appear, according to the hypothesis of multifractality of the fracture surface [1]. This means that, at small scales, a Brownian microscopic disorder is prevalent whereas, at large scales, the effect of disorder vanishes, yielding a macroscopical homogeneous behavior. The dimensional transition from disorder to order may be synthesized by a Multifractal Scaling Law (MFSL) valid for toughness, in perfect correspondence with the MFSL valid for strength, which has been described in a previous paper [2]. The MFSL for fracture energy is applied, as a bestfitting method, to relevant experimental results in the literature, allowing for the extrapolation of fracture energy values valid for real-sized structures.RésuméL'énergie de fracture nominale des structures en béton est constante pour des structures relativement grandes, alors qu'elle augmente avec les dimensions pour les structures relativement petites. Si l'espace de dissipation de l'énergie est modelé comme domaine monofractal avec une dimension non-intégrale comprise entre deux et trois, on observe une seule pente dans le diagramme bilogarithmique énergie de fracture-dimensions, comme il a déjà été observé dans un article précédent [1]. D'autre part, si l'intervalle d'échelle s'étend à plus d'un ordre de grandeur, une transition continue de la pente +1/2 à la pente zéro peut apparaître, en accord avec l'hypothèse de multifractalité de la surface de fracture [1]. Cela montre qu'un désordre microscopique Brownien prédomine dans les petites échelles, alors que, dans les grandes, l'effet de désordre disparaît et donne lieu à un comportement macroscopique homogène. La transition dimensionnelle du désordre à l'ordre peut être syntheétisée par la Loi d'Échelle Multifractale (MFSL) valable pour la ténacité, en parfait accord avec la Loi d'Échelle Multifractale valable pour la résistance, qui a été décrite dans un article précédent [2]. La Loi d'Échelle Multifractale pour l'énergie de fracture est appliquée, comme méthode d'interpolation «best-fitting», aux résultats d'expérimentation plus importants contenus dans la littérature, car elle permet d'extrapoler les valeurs de l'énergie de fracture valables pour les structures de dimensions réelles.

[1]  M. Elices,et al.  Measurement of the fracture energy using three-point bend tests: Part 1—Influence of experimental procedures , 1992 .

[2]  Rilem Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams , 1985 .

[3]  Xiaozhi Hu,et al.  Fracture energy and fracture process zone , 1992 .

[4]  Alberto Carpinteri,et al.  Size effects on nominal tensile strength of concrete structures: multifractality of material ligaments and dimensional transition from order to disorder , 1995 .

[5]  Surendra P. Shah,et al.  Two Parameter Fracture Model for Concrete , 1985 .

[6]  Alberto Carpinteri,et al.  Fractal nature of material microstructure and size effects on apparent mechanical properties , 1994 .

[7]  Z. Bažant Size Effect in Blunt Fracture: Concrete, Rock, Metal , 1984 .

[8]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[9]  A. Carpinteri Scaling laws and renormalization groups for strength and toughness of disordered materials , 1994 .

[10]  Y. Mai,et al.  Effect of specimen geometry on the essential work of plane stress ductile fracture , 1985 .

[11]  M. Elices,et al.  Measurement of the fracture energy using three-point bend tests: Part 3—influence of cutting theP-δ tail , 1992 .

[12]  Rilem FMC 1 Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams , 1985 .

[13]  I. Iori,et al.  Sulla meccanica della frattura dei laterizi: indagine sperimentale di elementi inflessi ed analisi di parametri caratteristici , 1992 .

[14]  Alberto Carpinteri,et al.  Multifractal nature of concrete fracture surfaces and size effects on nominal fracture energy , 1995 .

[15]  Z. Bažant,et al.  Size dependence of concrete fracture energy determined by RILEM work-of-fracture method , 1991, International Journal of Fracture.

[16]  A. Hillerborg,et al.  Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements , 1976 .

[17]  Hirozo Mihashi,et al.  Size effect on fracture energy of concrete , 1990 .

[18]  M. Elices,et al.  Measurement of the fracture energy using three-point bend tests: Part 2—Influence of bulk energy dissipation , 1992 .

[19]  Alberto Carpinteri,et al.  Size effects on tensile fracture properties: a unified explanation based on disorder and fractality of concrete microstructure , 1994 .

[20]  S. E. Swartz,et al.  Influence of Size Effects on Opening Mode Fracture Parameters for Precracked Concrete Beams in Bending , 1989 .

[21]  Arne Hillerborg,et al.  Results of three comparative test series for determining the fracture energyGF of concrete , 1985 .

[22]  B. Karihaloo,et al.  Size-effect prediction from effective crack model for plain concrete , 1990 .