Jamming-Resilient Message Dissemination in Wireless Networks

This paper initiates the study for the basic primitive of distributed message dissemination in multi-hop wireless networks under a strong adversarial jamming model. Specifically, the message dissemination problem is to deliver a message initiating at a source node to the whole network. An efficient algorithm for message dissemination can be an important building block for solving a variety of high-level network tasks. We consider the hard non-spontaneous wakeup case, where a node only wakes up when it receives a message. Under the realistic SINR model and a strong adversarial jamming model that removes the budget constraint commonly adopted in previous work by the adversary, we present a distributed randomized algorithm that can accomplish message dissemination in <inline-formula><tex-math notation="LaTeX">$\mathscr {T}(O(D(\log n+\log R)))$</tex-math><alternatives><mml:math><mml:mrow><mml:mi mathvariant="script">T</mml:mi><mml:mo>(</mml:mo><mml:mi>O</mml:mi><mml:mo>(</mml:mo><mml:mi>D</mml:mi><mml:mo>(</mml:mo><mml:mo form="prefix">log</mml:mo><mml:mi>n</mml:mi><mml:mo>+</mml:mo><mml:mo form="prefix">log</mml:mo><mml:mi>R</mml:mi><mml:mo>)</mml:mo><mml:mo>)</mml:mo><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="yu-ieq1-3108004.gif"/></alternatives></inline-formula> time slots with a high probability performance guarantee, where <inline-formula><tex-math notation="LaTeX">$\mathscr {T}(U)$</tex-math><alternatives><mml:math><mml:mrow><mml:mi mathvariant="script">T</mml:mi><mml:mo>(</mml:mo><mml:mi>U</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="yu-ieq2-3108004.gif"/></alternatives></inline-formula> is the number of time slots in the interval from the beginning of the algorithm's execution that contains <inline-formula><tex-math notation="LaTeX">$U$</tex-math><alternatives><mml:math><mml:mi>U</mml:mi></mml:math><inline-graphic xlink:href="yu-ieq3-3108004.gif"/></alternatives></inline-formula> unjammed time slots, <inline-formula><tex-math notation="LaTeX">$n$</tex-math><alternatives><mml:math><mml:mi>n</mml:mi></mml:math><inline-graphic xlink:href="yu-ieq4-3108004.gif"/></alternatives></inline-formula> is the number of nodes in the network, <inline-formula><tex-math notation="LaTeX">$D$</tex-math><alternatives><mml:math><mml:mi>D</mml:mi></mml:math><inline-graphic xlink:href="yu-ieq5-3108004.gif"/></alternatives></inline-formula> is the network diameter, and <inline-formula><tex-math notation="LaTeX">$R$</tex-math><alternatives><mml:math><mml:mi>R</mml:mi></mml:math><inline-graphic xlink:href="yu-ieq6-3108004.gif"/></alternatives></inline-formula> is the distance with respect to which the network is connected. Our algorithm is shown to be almost asymptotically optimal by the lower bound <inline-formula><tex-math notation="LaTeX">$\Omega (D\log n)$</tex-math><alternatives><mml:math><mml:mrow><mml:mi>Ω</mml:mi><mml:mo>(</mml:mo><mml:mi>D</mml:mi><mml:mo form="prefix">log</mml:mo><mml:mi>n</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="yu-ieq7-3108004.gif"/></alternatives></inline-formula> for non-spontaneous message dissemination in networks without jamming.

[1]  Zhipeng Cai,et al.  Structure-Free General Data Aggregation Scheduling for Multihop Battery-Free Wireless Networks , 2022, IEEE Transactions on Mobile Computing.

[2]  Yong Zhang,et al.  Competitive Age of Information in Dynamic IoT Networks , 2021, IEEE Internet of Things Journal.

[3]  Jiguo Yu,et al.  Implementing the Abstract MAC Layer via Inductive Coloring Under the Rayleigh-Fading Model , 2021, IEEE Transactions on Wireless Communications.

[4]  Tuo Shi,et al.  Distributed Query Processing in the Edge-Assisted IoT Data Monitoring System , 2021, IEEE Internet of Things Journal.

[5]  Jiguo Yu,et al.  Distributed Byzantine-Resilient Multiple-Message Dissemination in Wireless Networks , 2021, IEEE/ACM Transactions on Networking.

[6]  Xiuzhen Cheng,et al.  An Exact Implementation of the Abstract MAC Layer via Carrier Sensing in Dynamic Networks , 2021, IEEE/ACM Transactions on Networking.

[7]  Francis C. M. Lau,et al.  Implementing The Abstract MAC Layer in Dynamic Networks , 2021, IEEE Transactions on Mobile Computing.

[8]  Quan Chen,et al.  Latency-and-Coverage Aware Data Aggregation Scheduling for Multihop Battery-Free Wireless Networks , 2021, IEEE Transactions on Wireless Communications.

[9]  Xiaoshuang Xing,et al.  Crowd Density Computation and Diffusion via Internet of Things , 2020, IEEE Internet of Things Journal.

[10]  Chaodong Zheng,et al.  Brief Announcement: Resource Competitive Broadcast against Adaptive Adversary in Multi-channel Radio Networks , 2020, PODC.

[11]  Jiguo Yu,et al.  Distributed Dominating Set and Connected Dominating Set Construction Under the Dynamic SINR Model , 2019, 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS).

[12]  Chaodong Zheng,et al.  Fast and Resource Competitive Broadcast in Multi-channel Radio Networks , 2019, SPAA.

[13]  Francis C. M. Lau,et al.  Fast Distributed Backbone Construction Despite Strong Adversarial Jamming , 2019, IEEE INFOCOM 2019 - IEEE Conference on Computer Communications.

[14]  Hai Jin,et al.  Stable Local Broadcast in Multihop Wireless Networks Under SINR , 2018, IEEE/ACM Transactions on Networking.

[15]  Christian Scheideler,et al.  Sade: competitive MAC under adversarial SINR , 2018, Distributed Computing.

[16]  Li Ning,et al.  Distributed Spanner Construction With Physical Interference: Constant Stretch and Linear Sparseness , 2017, IEEE/ACM Transactions on Networking.

[17]  Jiguo Yu,et al.  Distributed deterministic broadcasting algorithms under the SINR model , 2016, IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer Communications.

[18]  Francis C. M. Lau,et al.  Distributed multiple-message broadcast in wireless ad hoc networks under the SINR model , 2016, Theor. Comput. Sci..

[19]  Kai Han,et al.  Achieving Energy Efficiency and Reliability for Data Dissemination in Duty-Cycled WSNs , 2015, IEEE/ACM Transactions on Networking.

[20]  Dariusz R. Kowalski,et al.  On the impact of geometry on ad hoc communication in wireless networks , 2014, PODC '14.

[21]  Christian Scheideler,et al.  Competitive MAC under adversarial SINR , 2013, IEEE INFOCOM 2014 - IEEE Conference on Computer Communications.

[22]  Catherine Rosenberg,et al.  Compressed Data Aggregation: Energy-Efficient and High-Fidelity Data Collection , 2013, IEEE/ACM Transactions on Networking.

[23]  Calvin C. Newport,et al.  Broadcast in the Ad Hoc SINR Model , 2013, DISC.

[24]  Majid Khabbazian,et al.  Randomized broadcast in radio networks with collision detection , 2013, PODC '13.

[25]  Dariusz R. Kowalski,et al.  Distributed Deterministic Broadcasting in Uniform-Power Ad Hoc Wireless Networks , 2013, FCT.

[26]  Dariusz R. Kowalski,et al.  Distributed Deterministic Broadcasting in Wireless Networks of Weak Devices , 2012, ICALP.

[27]  Christian Scheideler,et al.  Competitive throughput in multi-hop wireless networks despite adaptive jamming , 2012, Distributed Computing.

[28]  Francis C. M. Lau,et al.  An O(log n) Distributed Approximation Algorithm for Local Broadcasting in Unstructured Wireless Networks , 2012, 2012 IEEE 8th International Conference on Distributed Computing in Sensor Systems.

[29]  Christian Scheideler,et al.  Competitive and Fair Medium Access Despite Reactive Jamming , 2011, 2011 31st International Conference on Distributed Computing Systems.

[30]  Christian Scheideler,et al.  Self-stabilizing leader election for single-hop wireless networks despite jamming , 2011, MobiHoc '11.

[31]  Catherine Rosenberg,et al.  Throughput-Lifetime Trade-Offs in Multihop Wireless Networks under an SINR-Based Interference Model , 2011, IEEE Transactions on Mobile Computing.

[32]  Jun Luo,et al.  GeoQuorum: Load balancing and energy efficient data access in wireless sensor networks , 2011, 2011 Proceedings IEEE INFOCOM.

[33]  Xin Liu,et al.  Performance of IEEE 802.11 under Jamming , 2008, Mobile Networks and Applications.

[34]  Yih-Chun Hu,et al.  Cross-Layer Jamming Detection and Mitigation in Wireless Broadcast Networks , 2007, IEEE/ACM Transactions on Networking.

[35]  Catherine Rosenberg,et al.  Engineering Wireless Mesh Networks: Joint Scheduling, Routing, Power Control, and Rate Adaptation , 2010, IEEE/ACM Transactions on Networking.

[36]  Christian Scheideler,et al.  A jamming-resistant MAC protocol for single-hop wireless networks , 2008, PODC '08.

[37]  Robert Simon,et al.  A multi-channel defense against jamming attacks in wireless sensor networks , 2007, Q2SWinet '07.

[38]  Dan Rubenstein,et al.  Using Channel Hopping to Increase 802.11 Resilience to Jamming Attacks , 2007, IEEE INFOCOM 2007 - 26th IEEE International Conference on Computer Communications.

[39]  Xin Liu,et al.  SPREAD: Foiling Smart Jammers Using Multi-Layer Agility , 2007, IEEE INFOCOM 2007 - 26th IEEE International Conference on Computer Communications.

[40]  Andrzej Pelc,et al.  Feasibility and complexity of broadcasting with random transmission failures , 2005, PODC '05.

[41]  Wenyuan Xu,et al.  Channel surfing and spatial retreats: defenses against wireless denial of service , 2004, WiSe '04.

[42]  Wojciech Rytter,et al.  Broadcasting algorithms in radio networks with unknown topology , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[43]  Andrzej Pelc,et al.  Broadcasting in undirected ad hoc radio networks , 2003, PODC '03.

[44]  Andrzej Pelc,et al.  Deterministic broadcasting time in radio networks of unknown topology , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[45]  Reuven Bar-Yehuda,et al.  On the Time-Complexity of Broadcast in Multi-hop Radio Networks: An Exponential Gap Between Determinism and Randomization , 1992, J. Comput. Syst. Sci..