Continuous Variable Quantum Teleportation Network

Quantum network scales the advantages of quantum communication protocols to more than two detached users, which offers great potential to realize the quantum internet. Here, a fully connected continuous‐variable (CV) quantum teleportation network architecture is presented, in which a squeezed state of light distributes each pair of entangled sideband modes to each communication link that bridges any pair of users. The quantum teleportation scheme is similar to standard two‐party ones for each communication link, without sacrificing communication capability and reliability. The demonstration based on CV‐entangled sideband modes opens an innovative possibility to implement many tasks of deterministic quantum information processing.

[1]  Bo Jing,et al.  Towards Real‐World Quantum Networks: A Review , 2022, Laser & Photonics Reviews.

[2]  C. Xie,et al.  High-performance cavity-enhanced quantum memory with warm atomic cell , 2021, Nature Communications.

[3]  G. Guo,et al.  Heralded entanglement distribution between two absorptive quantum memories , 2021, Nature.

[4]  Jian-Wei Pan,et al.  An integrated space-to-ground quantum communication network over 4,600 kilometres , 2021, Nature.

[5]  D. Schuster,et al.  Deterministic multi-qubit entanglement in a quantum network , 2020, Nature.

[6]  Mohsen Razavi,et al.  A trusted node–free eight-user metropolitan quantum communication network , 2019, Science Advances.

[7]  Xueshi Guo,et al.  Deterministic generation of a two-dimensional cluster state , 2019, Science.

[8]  Warit Asavanant,et al.  Time-Domain Multiplexed 2-Dimensional Cluster State : Universal Quantum Computing Platform , 2019 .

[9]  Wei Zhao,et al.  Quantum key distribution with dissipative Kerr soliton generated by on-chip microresonators , 2018, 1812.11415.

[10]  Rupert Ursin,et al.  An entanglement-based wavelength-multiplexed quantum communication network , 2018, Nature.

[11]  C. Xie,et al.  Establishing and storing of deterministic quantum entanglement among three distant atomic ensembles , 2017, Nature Communications.

[12]  A. Szameit,et al.  Demonstration of local teleportation using classical entanglement , 2015, 2017 Conference on Lasers and Electro-Optics (CLEO).

[13]  J. Eisert,et al.  Advances in quantum teleportation , 2015, Nature Photonics.

[14]  A. Politi,et al.  Continuous-variable entanglement on a chip , 2015, Nature Photonics.

[15]  Q. Gong,et al.  Multipartite Einstein–Podolsky–Rosen steering and genuine tripartite entanglement with optical networks , 2014, Nature Physics.

[16]  Y. Salathe,et al.  Deterministic quantum teleportation with feed-forward in a solid state system , 2013, Nature.

[17]  Shuntaro Takeda,et al.  Deterministic quantum teleportation of photonic quantum bits by a hybrid technique , 2013, Nature.

[18]  C. Fabre,et al.  Wavelength-multiplexed quantum networks with ultrafast frequency combs , 2013, Nature Photonics.

[19]  F. Bussières,et al.  Broadband waveguide quantum memory for entangled photons , 2010, Nature.

[20]  L. Jiang,et al.  Quantum entanglement between an optical photon and a solid-state spin qubit , 2010, Nature.

[21]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[22]  P. Grangier,et al.  Quantum interference between two single photons emitted by independently trapped atoms , 2006, Nature.

[23]  A. Furusawa,et al.  Demonstration of a quantum teleportation network for continuous variables , 2004, Nature.

[24]  F. Schmidt-Kaler,et al.  Deterministic quantum teleportation with atoms , 2004, Nature.

[25]  N. Cerf,et al.  Quantum key distribution using gaussian-modulated coherent states , 2003, Nature.

[26]  J. Cirac,et al.  Long-distance quantum communication with atomic ensembles and linear optics , 2001, Nature.

[27]  Isaac L. Chuang,et al.  Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations , 1999, Nature.

[28]  Kimble,et al.  Unconditional quantum teleportation , 1998, Science.

[29]  Michal Lipson,et al.  CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects , 2010 .