Chemical agents that inhibit pollen development: tools for research

[1]  B. Gunning,et al.  Colchicine inhibits plasmodium formation and disrupts pathways of sporopollenin secretion in the anther tapetum ofTradescantia virginiana L. , 1986, Protoplasma.

[2]  M. Ashton,et al.  Development of the pollen grain and tapetum of wheat (Triticum aestivum) in untreated plants and plants treated with chemical hybridizing agent RH0007 , 1989, Sexual Plant Reproduction.

[3]  J. Boon,et al.  p-coumaric acid — a monomer in the sporopollenin skeleton , 1989, Planta.

[4]  H. Mogensen,et al.  A structural study on the mode of action of CHATM Chemical Hybridizing Agent in wheat , 1989, Sexual Plant Reproduction.

[5]  D. Bucholtz Effect of environment and formulation on the absorption and translocation of fenridazon in wheat (Triticum aestivum L.) , 1988, Plant Growth Regulation.

[6]  E. Picard,et al.  Significant improvement of androgenetic haploid and doubled haploid induction from wheat plants treated with a chemical hybridization agent , 1987, Theoretical and Applied Genetics.

[7]  F. S. Wu,et al.  Changes in protein and amino acid content during anther development in fertile and cytoplasmic male sterile Petunia , 1985, Theoretical and Applied Genetics.

[8]  S. M. Zhou,et al.  The response of anther culture to culture temperature in Triticum aestivum , 1983, Theoretical and Applied Genetics.

[9]  H. Vogt,et al.  Chemically induced sterility in wheat for hybrid seed production , 2004, Euphytica.

[10]  D. Bowles,et al.  Glucosylation of sterols and polyprenolphosphate in the Golgi apparatus of Phaseolus aureus , 2004, Planta.

[11]  C. Mariani,et al.  Induction of male sterility in plants by a chimaeric ribonuclease gene , 1990, Nature.

[12]  M. Vesper,et al.  A chemical pollen suppressant inhibits auxin-induced growth in maize coleoptile sections , 1990 .

[13]  J. P. Mascarenhas Gene Activity During Pollen Development , 1990 .

[14]  A. M. Dhopte,et al.  Response of sorghum to elevated night temperature imposed during floret differentiation under field conditions. , 1990 .

[15]  J. Labovitz,et al.  The effects of chemical hybridizing agents sc 1058 and sc 1271 on the ultrastructure of developing wheat anthers triticum aestivum cultivar yecora rojo , 1989 .

[16]  R. Pugmire,et al.  Structural analysis of Lilium longiflorum sporopollenin by 13C NMR spectroscopy , 1989 .

[17]  V. Sawhney,et al.  Microsporogenesis in the normal and male-sterile stamenIess-2 mutant of tomato (Lycopersicon esculentum) , 1988 .

[18]  V. Sawhney,et al.  High Temperature Induced Male and Female Sterility in Canola (Brassica napus L.) , 1988 .

[19]  B. Murray,et al.  Light and electron microscope studies on pollen development in barley (Hordeum vulgare L.) grown under copper‐sufficient and deficient conditions , 1988 .

[20]  C. S. Levings,et al.  Molecular studies of cytoplasmic male sterility in maize , 1988 .

[21]  J. Labovitz HighResolution Solid State '3CNMR Spectroscopy of Sporopollenins fromDifferent Plant Taxa , 1988 .

[22]  M. Staebell,et al.  N-caffeoyl-4-amino-n-butyric acid, a new flower-specific metabolite in cultured tobacco cells and tobacco plants. , 1987, The Journal of biological chemistry.

[23]  M. Jacobs,et al.  The Induction Of Haploids Of Sugarbeet (Beta Vulgaris L.) Using Anther And Free Pollen Culture Or Ovule And Ovary Culture , 1986 .

[24]  R. King,et al.  Regulation of Grain Number in Wheat: Changes in Endogenous Levels of Abscisic Acid , 1986 .

[25]  G. El-Ghazaly,et al.  Studies of the Development of Wheat (Triticum Aestivum) Pollen , 1986 .

[26]  R. Graybosch,et al.  MALE STERILITY IN SOYBEAN (GLYCINE MAX). II. PHENOTYPIC EXPRESSION OF THE ms4 MUTANT , 1985 .

[27]  A. Prahl,et al.  Studies on Sporopollenin Biosynthesis: The Effect of Inhibitors of Carotenoid Biosynthesis on Sporopollenin Accumulation , 1985 .

[28]  I. Adler,et al.  High-performance liquid chromatographic analysis of fenridazon-potassium in wheat grain and straw , 1984 .

[29]  T. Takemoto,et al.  Physiological aspect of mugineic acid, a possible phytosiderophore of graminaceous plants , 1984 .

[30]  L. Bogorad,et al.  Cell culture and somatic cell genetics of plants , 1984 .

[31]  G. Wenzel,et al.  CHAPTER 37 – Anther Culture of Cereals and Grasses , 1984 .

[32]  N. Sunderland CHAPTER 34 – Anther Culture of Nicotiana tabacum , 1984 .

[33]  M. Sedgley,et al.  Development Anatomy in Wheat of Male Sterility Induced by Heat Stress, Water Deficit or Abscisic Acid , 1984 .

[34]  M. Steer,et al.  Acetolysis-Resistant Structures in Tapetal Cells of Male-Sterile Barley , 1984 .

[35]  R. Knox Pollen-Pistil Interactions , 1984 .

[36]  J. McIndoo,et al.  Abnormal floral development of a tobacco mutant with elevated polyamine levels , 1983, Nature.

[37]  M. Steer,et al.  The cytological effects of the gametocides Ethrel and RH‐531 on microsporogenesis in barley (Hordeum vulgare L) , 1983 .

[38]  I. Nishiyama Male Sterility Caused by Cooling Treatment at the Young Microspore Stage in Rice Plants : XXII. A method to predict sterility just after the young microspore stage , 1982 .

[39]  J. Heslop-Harrison,et al.  THE POLLEN‐STIGMA INTERACTION IN THE GRASSES. 3. FEATURES OF THE SELF‐INCOMPATIBILITY RESPONSE , 1982 .

[40]  T. Kinoshita Chemically induced male sterility in angiosperms , 1982 .

[41]  J. Prevost,et al.  Hydroxycinnamic acid amides in fertile and cytoplasmic male sterile lines of maize , 1982 .

[42]  B. Dell Male Sterility and Anther Wall Structure in Copper-deficient Plants , 1981 .

[43]  T. Ishida,et al.  Molecular structure and spectroscopic properties of a copper(II) complex with mugineic acid, a novel amino acid from gramineous plants , 1981 .

[44]  H. Harada,et al.  Effects of Abscisic Acid and Water Stress on the Embryo and Plantlet Formation in Anther Culture of Nicotiana tabacum cv. Samsun , 1980 .

[45]  M. Ponchet,et al.  Hydroxycinnamoyl acid amides and aromatic amines in the inflorescences of some araceae species , 1980 .

[46]  W. Dashek,et al.  Azetidine-2-carboxylic Acid and Lily Pollen Tube Elongation , 1980 .

[47]  S. Chauhan,et al.  Developmental changes in Coriandrum sativum L. anthers of plants infected by Protomyces macrosporous Ung. , 1980 .

[48]  A. Deshayes,et al.  Hydroxycinnamic acid amides (HCA) in zea mays , 1979 .

[49]  E. Earle,et al.  The cytology of pollen abortion in C-cytoplasmic male-sterile corn anthers , 1979 .

[50]  R. Graham,et al.  The sensitivity of hexaploid and octoploid triticales and their parent species to copper deficiency , 1979 .

[51]  R. Graham Physiological Aspects of Time of Application of Copper to Wheat Plants , 1976 .

[52]  M. Noma,et al.  Occurrence of nicotianamine in higher plants , 1976 .

[53]  R. Graham,et al.  Male sterility in wheat plants deficient in copper , 1975, Nature.

[54]  R. G. Stanley Pollen: biology, biochemistry, management , 1974 .

[55]  L. Fowden,et al.  Substrate discrimination by prolyl-tRNA synthetase from various higher plants , 1972 .

[56]  I. Rowland,et al.  Inhibition of bacterial growth by cis- and trans-3,4-methano-L-prolines: mechanism of toxicity. , 1972, Chemico-biological interactions.

[57]  M. Bennett,et al.  Additional Mitosis in Wheat Pollen induced by Ethrel , 1972, Nature.

[58]  T. Kinoshita Genetical studies on the male sterility of sugar beets (Beta Vulgaris L.) and its related species , 1971 .

[59]  M. Barbier,et al.  Chemistry and biochemistry of pollens. , 1970 .

[60]  D. Millington,et al.  Cyclopropane amino acids from Aesculus and Blighia , 1969 .

[61]  U. Khoo,et al.  FREE AMINO ACID DIFFERENCES BETWEEN CYTOPLASMIC MALE STERILE AND NORMAL FERTILE ANTHERS. , 1957, Proceedings of the National Academy of Sciences of the United States of America.

[62]  L. Fowden,et al.  Azetidine-2-Carboxylic Acid: a New Constituent of Plants , 1955, Nature.

[63]  N. Bathurst The Amino-Acids of Grass Pollen , 1954 .