High‐Gain Phototransistors Based on a CVD MoS2 Monolayer

A phototransistor based on a chemical vapor deposited (CVD) MoS2 monolayer exhibits a high photoresponsivity (2200 A W(-1) ) and an excellent photogain (5000). The presence of shallow traps contributes to the persistent photoconductivity. Ambient adsorbates act as p-dopants to MoS2 , decreasing the carrier mobility, photoresponsivity, and photogain.

[1]  Melvin Lax,et al.  Cascade Capture of Electrons in Solids , 1960 .

[2]  C. Soci,et al.  ZnO nanowire UV photodetectors with high internal gain. , 2007, Nano letters.

[3]  Wang Yao,et al.  Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. , 2011, Physical review letters.

[4]  Lifeng Wang,et al.  Synthesis of few-layer GaSe nanosheets for high performance photodetectors. , 2012, ACS nano.

[5]  Xiaojie Xu,et al.  Heteroepitaxial growth of GaP/ZnS nanocable with superior optoelectronic response. , 2013, Nano letters.

[6]  Yu-Chuan Lin,et al.  Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. , 2012, Nano letters.

[7]  W. E. Collins,et al.  Enhanced photoresponse in ZnO nanowires decorated with CdTe quantum dot , 2007 .

[8]  Charles Howard Henry,et al.  Nonradiative Recombination at Deep Levels in GaAs and GaP by Lattice-Relaxation Multiphonon Emission , 1975 .

[9]  S. Min,et al.  MoS₂ nanosheet phototransistors with thickness-modulated optical energy gap. , 2012, Nano letters.

[10]  Wang Yao,et al.  Valley polarization in MoS2 monolayers by optical pumping. , 2012, Nature nanotechnology.

[11]  Hisato Yamaguchi,et al.  Photoluminescence from chemically exfoliated MoS2. , 2011, Nano letters.

[12]  Cesare Soci,et al.  Silicon nanowire detectors showing phototransistive gain , 2008 .

[13]  A. Kis,et al.  Breakdown of high-performance monolayer MoS2 transistors. , 2012, ACS nano.

[14]  Soon Cheol Hong,et al.  High‐Detectivity Multilayer MoS2 Phototransistors with Spectral Response from Ultraviolet to Infrared , 2012, Advanced materials.

[15]  B. Liu,et al.  GaS and GaSe Ultrathin Layer Transistors , 2012, Advanced materials.

[16]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[17]  Xiaodong Xu,et al.  Vapor-solid growth of high optical quality MoS₂ monolayers with near-unity valley polarization. , 2013, ACS nano.

[18]  David Tománek,et al.  Designing electrical contacts to MoS2 monolayers: a computational study. , 2012, Physical review letters.

[19]  A. Zunger,et al.  Anion vacancies as a source of persistent photoconductivity in II-VI and chalcopyrite semiconductors , 2005, cond-mat/0503018.

[20]  J. Shan,et al.  Tightly bound trions in monolayer MoS2. , 2012, Nature materials.

[21]  P M Campbell,et al.  Chemical vapor sensing with monolayer MoS2. , 2013, Nano letters.

[22]  Z. Liao,et al.  Temperature dependence of photoconductivity and persistent photoconductivity of single ZnO nanowires , 2009 .

[23]  Aaron M. Jones,et al.  Electrical tuning of valley magnetic moment through symmetry control in bilayer MoS2 , 2012, 1208.6069.

[24]  B. Chakraborty,et al.  Symmetry-dependent phonon renormalization in monolayer MoS2transistor , 2012, Physical Review B.

[25]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[26]  A. Kittel,et al.  Persistent photoconductivity in highly porous ZnO films , 2007 .

[27]  Kinam Kim,et al.  High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals , 2012, Nature Communications.

[28]  Zhong Lin Wang,et al.  Enhancing sensitivity of a single ZnO micro-/nanowire photodetector by piezo-phototronic effect. , 2010, ACS nano.

[29]  Xiang Zhang,et al.  A graphene-based broadband optical modulator , 2011, Nature.

[30]  Hugen Yan,et al.  Anomalous lattice vibrations of single- and few-layer MoS2. , 2010, ACS nano.

[31]  Lain‐Jong Li,et al.  Synthesis of Large‐Area MoS2 Atomic Layers with Chemical Vapor Deposition , 2012, Advanced materials.

[32]  D. Lang,et al.  Large-Lattice-Relaxation Model for Persistent Photoconductivity in Compound Semiconductors , 1977 .

[33]  Kai Xiao,et al.  Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates. , 2013, Nano letters.

[34]  T. Murphy,et al.  Sub-bandgap photoconductivity in ZnO epilayers and extraction of trap density spectra , 2006 .

[35]  K. Jacobsen,et al.  First-principles study of the phonon-limited mobility in n-type single-layer MoS2 , 2012, 1201.5284.

[36]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[37]  Qingliang Liao,et al.  Investigation on the Plasma-Induced Emission Properties of Large Area Carbon Nanotube Array Cathodes with Different Morphologies , 2010, Nanoscale research letters.

[38]  E. Monroy,et al.  Room-temperature photodetection dynamics of single GaN nanowires. , 2012, Nano letters.

[39]  Arindam Ghosh,et al.  Nature of electronic states in atomically thin MoS₂ field-effect transistors. , 2011, ACS nano.

[40]  Hua Zhang,et al.  The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. , 2013, Nature chemistry.

[41]  K. Novoselov,et al.  A roadmap for graphene , 2012, Nature.

[42]  Zhiyuan Zeng,et al.  Metal dichalcogenide nanosheets: preparation, properties and applications. , 2013, Chemical Society reviews.

[43]  Hua Zhang,et al.  Single-layer MoS2 phototransistors. , 2012, ACS nano.

[44]  F. Capasso,et al.  Photoinduced oxygen release and persistent photoconductivity in ZnO nanowires , 2011, Nanoscale research letters.

[45]  Yu-Chuan Lin,et al.  Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization. , 2012, Nanoscale.