A toolbox for fuzzy clustering using the R programming language

Abstract Fuzzy clustering is used extensively in several domains of research. In the literature, starting from the well-known fuzzy k-means (fkm) clustering algorithm, an increasing number of papers devoted to fkm and its extensions can be found. Nevertheless, a lack of the related software for implementing these algorithms can be observed preventing their use in practice. Even the standard fkm is not necessarily available in the most common software. For this purpose, a new toolbox for fuzzy clustering using the R programming language is presented by examples. The toolbox, called fclust , contains a suit of fuzzy clustering algorithms, fuzzy cluster validity indices and visualization tools for fuzzy clustering results.

[1]  Sadaaki Miyamoto,et al.  Fuzzy c-means as a regularization and maximum entropy approach , 1997 .

[2]  J. C. Dunn,et al.  A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters , 1973 .

[3]  J. Bezdek,et al.  VAT: a tool for visual assessment of (cluster) tendency , 2002, Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290).

[4]  Enrique H. Ruspini,et al.  A New Approach to Clustering , 1969, Inf. Control..

[5]  Lotfi A. Zadeh,et al.  Please Scroll down for Article International Journal of General Systems Fuzzy Sets and Systems* Fuzzy Sets and Systems* , 2022 .

[6]  Y. Dodge on Statistical data analysis based on the L1-norm and related methods , 1987 .

[7]  J. Bezdek Cluster Validity with Fuzzy Sets , 1973 .

[8]  Efendi N. Nasibov,et al.  Fuzzy joint points based clustering algorithms for large data sets , 2015, Fuzzy Sets Syst..

[9]  David J. Hand,et al.  Advances in Intelligent Data Analysis , 2000, Lecture Notes in Computer Science.

[10]  Frank Klawonn,et al.  An alternative approach to the fuzzifier in fuzzy clustering to obtain better clustering , 2003, EUSFLAT Conf..

[11]  Gerardo Beni,et al.  A Validity Measure for Fuzzy Clustering , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Donald Gustafson,et al.  Fuzzy clustering with a fuzzy covariance matrix , 1978, 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes.

[13]  J. C. Peters,et al.  Fuzzy Cluster Analysis : A New Method to Predict Future Cardiac Events in Patients With Positive Stress Tests , 1998 .

[14]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[15]  Paolo Giordani,et al.  On possibilistic clustering with repulsion constraints for imprecise data , 2013, Inf. Sci..

[16]  J. Bezdek Numerical taxonomy with fuzzy sets , 1974 .

[17]  Rajesh N. Davé,et al.  Characterization and detection of noise in clustering , 1991, Pattern Recognit. Lett..

[18]  W. Peizhuang Pattern Recognition with Fuzzy Objective Function Algorithms (James C. Bezdek) , 1983 .

[19]  Frank Klawonn,et al.  Fuzzy clustering with polynomial fuzzifier function in connection with m-estimators , 2011 .

[20]  Anupam Joshi,et al.  Low-complexity fuzzy relational clustering algorithms for Web mining , 2001, IEEE Trans. Fuzzy Syst..

[21]  James C. Bezdek,et al.  Visual cluster validity for prototype generator clustering models , 2003, Pattern Recognit. Lett..

[22]  James C. Bezdek,et al.  VCV2 - Visual Cluster Validity , 2008, WCCI.

[23]  Rui-Ping Li,et al.  A maximum-entropy approach to fuzzy clustering , 1995, Proceedings of 1995 IEEE International Conference on Fuzzy Systems..

[24]  Masao Mukaidono,et al.  Gaussian clustering method based on maximum-fuzzy-entropy interpretation , 1999, Fuzzy Sets Syst..

[25]  Frank Klawonn,et al.  Visual Inspection of Fuzzy Clustering Results , 2003 .

[26]  King-Sun Fu,et al.  A Formulation of Fuzzy Automata and Its Application as a Model of Learning Systems , 1969, IEEE Trans. Syst. Sci. Cybern..

[27]  Ali S. Hadi,et al.  Finding Groups in Data: An Introduction to Chster Analysis , 1991 .

[28]  Abdul Suleman,et al.  A convex semi-nonnegative matrix factorisation approach to fuzzy c-means clustering , 2015, Fuzzy Sets Syst..

[29]  Jacek M. Leski,et al.  Fuzzy c-ordered-means clustering , 2016, Fuzzy Sets Syst..

[30]  Zexuan Ji,et al.  Interval-valued possibilistic fuzzy C-means clustering algorithm , 2014, Fuzzy Sets Syst..

[31]  R. Krishnapuram,et al.  A fuzzy relative of the k-medoids algorithm with application to web document and snippet clustering , 1999, FUZZ-IEEE'99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315).

[32]  Chien-Liang Liu,et al.  Clustering documents with labeled and unlabeled documents using fuzzy semi-Kmeans , 2013, Fuzzy Sets Syst..

[33]  Frank Klawonn,et al.  What Is Fuzzy about Fuzzy Clustering? Understanding and Improving the Concept of the Fuzzifier , 2003, IDA.

[34]  Ricardo J. G. B. Campello,et al.  A fuzzy extension of the silhouette width criterion for cluster analysis , 2006, Fuzzy Sets Syst..

[35]  Peter J. Rousseeuw,et al.  Clustering by means of medoids , 1987 .

[36]  Rajkumar Roy,et al.  Advances in Soft Computing: Engineering Design and Manufacturing , 1998 .

[37]  Jiye Liang,et al.  A novel fuzzy clustering algorithm with between-cluster information for categorical data , 2013, Fuzzy Sets Syst..