Turbulent hydrodynamic stress induced dispersion and fragmentation of nanoscale agglomerates.

High pressure dispersion nozzles of 2.5-10 mm length and 125 microm diameter have been characterized in terms of fluid dynamics and dispersion experiments at 100-1400 bar. Elongational stresses at the nozzle entry (5 x 10(5) Pa) and turbulent stresses up to 10(5) Pa at a Reynolds number of 25,000 in turbulent channel flow are identified crucial for desagglomeration and aggregate fragmentation. Maximum stresses are calculated on representative particle tracks and related to agglomerate breakage. Agglomerates in the experimental study are in the range of the Kolmogorov micro scale (100-400 nm) and therefore break due to turbulent energy dissipation in viscous flow. Bond strength distributions could be determined experimentally from particle size distributions and fluid dynamics simulations, with primary particle erosion determined as dispersion mechanism for diffusion flame silica particles. Nanoscale agglomerates show a power law scaling for breakage with scaling exponents diverging from theory of floc dispersion. This is attributed to their strong bonding by sinter necks.

[1]  R. J. Hunter,et al.  The energy dissipation in sheared coagulated sols , 1977 .

[2]  Walter Caseri,et al.  Polymer‐TiO2 Nanocomposites: A Route Towards Visually Transparent Broadband UV Filters and High Refractive Index Materials , 2003 .

[3]  G. Beaucage,et al.  Particle size distributions from small-angle scattering using global scattering functions , 2004 .

[4]  Massimo Morbidelli,et al.  Investigation of aggregation, breakage and restructuring kinetics of colloidal dispersions in turbulent flows by population balance modeling and static light scattering , 2006 .

[5]  G. Kasper,et al.  Impact fragmentation of nanoparticle agglomerates , 2003 .

[6]  B Jefferson,et al.  A review of floc strength and breakage. , 2005, Water research.

[7]  S. Harada,et al.  Dependence of fragmentation behavior of colloidal aggregates on their fractal structure. , 2006, Journal of colloid and interface science.

[8]  H. Schubert,et al.  Herstellung stabiler Dispersionen aus pyrogener Kieselsäure , 2005 .

[9]  Julio M. Ottino,et al.  Dispersion of solids in nonhomogeneous viscous flows , 1998 .

[10]  W. Russel,et al.  Structure and breakup of flocs subjected to fluid stresses: I. Shear experiments , 1986 .

[11]  Huang,et al.  Limits of the fractal dimension for irreversible kinetic aggregation of gold colloids. , 1985, Physical review letters.

[12]  Deok‐Ho Kim,et al.  Scratch Resistant and Transparent UV-Protective Coating on Polycarbonate , 2003 .

[13]  Steven G. Thoma,et al.  Ultrasonic fragmentation of agglomerate powders , 1993 .

[14]  W. Russel,et al.  Structure and breakup of flocs subjected to fluid stresses: III. Converging flow , 1987 .

[15]  S. G. Mason,et al.  Orthokinetic phenomena in disperse systems , 1977 .

[16]  T. Shih,et al.  A new k-ϵ eddy viscosity model for high reynolds number turbulent flows , 1995 .

[17]  Sotiris E. Pratsinis,et al.  Flame aerosol synthesis of ceramic powders , 1998 .

[18]  E. Grulke,et al.  Breakage of TiO2 agglomerates in electrostatically stabilized aqueous dispersions , 2005 .

[19]  G. Batchelor,et al.  Kolmogoroff's theory of locally isotropic turbulence , 1947, Mathematical Proceedings of the Cambridge Philosophical Society.

[20]  S. Provencher CONTIN: A general purpose constrained regularization program for inverting noisy linear algebraic and integral equations , 1984 .

[21]  T. Narayanan,et al.  SAXS and USAXS on the high brilliance beamline at the ESRF , 2001 .

[22]  B. Launder,et al.  The numerical computation of turbulent flows , 1990 .

[23]  G. Kickelbick,et al.  Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale , 2003 .

[24]  Sotiris E. Pratsinis,et al.  Nozzle‐quenching process for controlled flame synthesis of titania nanoparticles , 2003 .

[25]  Ica Manas-Zloczower,et al.  Analysis of the kinetics of agglomerate erosion in simple shear flows , 2005 .

[26]  D. Bache Floc rupture and turbulence: a framework for analysis , 2004 .

[27]  Ica Manas-Zloczower,et al.  Dispersion of titanium dioxide agglomerates in viscous media , 1993 .

[28]  H. Schuchmann,et al.  Herstellen von Emulsionen in Hochdruckhomogenisatoren mit modifizierten Lochblenden , 2004 .

[29]  I. Manas‐Zloczower,et al.  Prediction of the dispersion of particle clusters in the nano-scale—Part I: Steady shearing responses , 2006 .

[30]  E. Byrne,et al.  Breakage model development and application with CFD for predicting breakage of whey protein precipitate particles , 2005 .

[31]  Geoffrey Ingram Taylor,et al.  The Viscosity of a Fluid Containing Small Drops of Another Fluid , 1932 .

[32]  Sotiris E Pratsinis,et al.  Soft- and hard-agglomerate aerosols made at high temperatures. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[33]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[34]  Tsouris,et al.  Shear-Induced Flocculation of Colloidal Particles in Stirred Tanks. , 1998, Journal of colloid and interface science.

[35]  F. Clauser The Structure of Turbulent Shear Flow , 1957, Nature.

[36]  Harry A. Dwyer,et al.  Three-dimensional calculations of the simple shear flow around a single particle between two moving walls , 1995 .

[37]  A. A. Potanin On the computer simulation of the deformation and breakup of colloidal aggregates in shear flow , 1993 .

[38]  A. Kolmogorov The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[39]  C. Sorensen Light Scattering by Fractal Aggregates: A Review , 2001 .

[40]  P. Meakin Formation of fractal clusters and networks by irreversible diffusion-limited aggregation , 1983 .

[41]  W. Russel,et al.  Structure and breakup of flocs subjected to fluid stresses: II. Theory , 1987 .

[42]  Ko Higashitani,et al.  Simulation of deformation and breakup of large aggregates in flows of viscous fluids , 2001 .

[43]  Geoffrey Ingram Taylor,et al.  The formation of emulsions in definable fields of flow , 1934 .

[44]  F. Müller,et al.  Dispersing nanoparticles in liquids , 2004 .