LAN of extreme order statistics

Consider an iid sampleZ1,...,Zn with common distribution functionF on the real line, whose upper tail belongs to a parametric family {Fβ: β∈⊝}. We establish local asymptotic normality (LAN) of the loglikelihood process pertaining to the vector(Zn−i+1∶n)i=1k of the upperk=k(n)→n→∞∞ order statistics in the sample, if the family {Fβ:β∈⊝} is in a neighborhood of the family of generalized Pareto distributions. It turns out that, except in one particular location case, thekth-largest order statisticZn−k+1∶n is the central sequence generating LAN. This implies thatZn−k+1∶n is asymptotically sufficient and that asymptotically optimal tests for the underlying parameter β can be based on the single order statisticZn−k+1∶n. The rate at whichZn−k+1∶n becomes asymptotically sufficient is however quite poor.

[1]  Alan H. Welsh,et al.  Adaptive Estimates of Parameters of Regular Variation , 1985 .

[2]  Enrique Castillo,et al.  The Selection of the Domain of Attraction of an Extreme Value Distribution from a Set of Data , 1989 .

[3]  NEGLECTING OBSERVATIONS IN GAUSSIAN SEQUENCES OF STATISTICAL EXPERIMENTS , 1995 .

[4]  J. Pickands Statistical Inference Using Extreme Order Statistics , 1975 .

[5]  Rolf-Dieter Reiss,et al.  A Course on Point Processes , 1992 .

[6]  Richard L. Smith Estimating tails of probability distributions , 1987 .

[7]  A. M. Hasofer,et al.  A Test for Extreme Value Domain of Attraction , 1992 .

[8]  D. Mason,et al.  Central limit theorems for sums of extreme values , 1985, Mathematical Proceedings of the Cambridge Philosophical Society.

[9]  Michael Falk,et al.  On testing the extreme value index via the pot-method , 1995 .

[10]  L. Haan,et al.  Residual Life Time at Great Age , 1974 .

[11]  L. Haan,et al.  On the Estimation of the Extreme-Value Index and Large Quantile Estimation , 1989 .

[12]  Frank Marohn,et al.  ON TESTING THE EXPONENTIAL AND GUMBEL DISTRIBUTION , 1994 .

[13]  J. Hosking,et al.  Parameter and quantile estimation for the generalized pareto distribution , 1987 .

[14]  R. Reiss Approximate Distributions of Order Statistics: With Applications to Nonparametric Statistics , 1989 .

[15]  Xiaoying Wei,et al.  Asymptotically efficient estimation of the index of regular variation , 1995 .

[16]  James V. Bondar,et al.  Mathematical theory of statistics , 1985 .

[17]  ASYMPTOTIC SUFFICIENCY OF ORDER STATISTICS FOR ALMOST REGULAR WEIBULL TYPE DENSITIES , 1994 .

[18]  Comparison of location models of Weibull type samples and extreme value processes , 1988 .

[19]  B. Gnedenko Sur La Distribution Limite Du Terme Maximum D'Une Serie Aleatoire , 1943 .

[20]  E. Gumbel,et al.  Statistics of extremes , 1960 .

[21]  F. Marohn Global sufficiency of extreme order statistics in location models of Weibull type , 1991 .

[22]  J. Hüsler,et al.  Laws of Small Numbers: Extremes and Rare Events , 1994 .

[23]  B. M. Hill,et al.  A Simple General Approach to Inference About the Tail of a Distribution , 1975 .

[24]  A. Janssen,et al.  On statistical information of extreme order statistics, local extreme value alternatives, and poisson point processes , 1994 .

[25]  L. L. Cam,et al.  Asymptotic Methods In Statistical Decision Theory , 1986 .

[26]  J. D. T. Oliveira,et al.  The Asymptotic Theory of Extreme Order Statistics , 1979 .

[27]  R. Reiss Approximate Distributions of Order Statistics , 1989 .