Stress Memorization Technique—Fundamental Understanding and Low-Cost Integration for Advanced CMOS Technology Using a Nonselective Process

In this paper, a comprehensive work toward the understanding of the stress memorization technique (SMT) is presented. The effects of the SMT upon PMOS and NMOS device performance are investigated and explained. A novel low-cost solution for a maskless SMT integration into advanced CMOS technologies is proposed, and additional device results examining the compatibility of SMT with fully silicided and metal inserted polysilicon gates are presented.

[1]  T. Skotnicki,et al.  A conventional 45nm CMOS node low-cost platform for general purpose and low power applications , 2004, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..

[2]  S. Orain,et al.  Electrical characterization and mechanical modeling of process induced strain in 65 nm CMOS technology , 2004, Proceedings of the 30th European Solid-State Circuits Conference (IEEE Cat. No.04EX850).

[3]  M. Silberstein,et al.  A 90nm high volume manufacturing logic technology featuring novel 45nm gate length strained silicon CMOS transistors , 2003, IEEE International Electron Devices Meeting 2003.

[4]  C.C. Chen,et al.  Stress memorization technique (SMT) by selectively strained-nitride capping for sub-65nm high-performance strained-Si device application , 2004, Digest of Technical Papers. 2004 Symposium on VLSI Technology, 2004..

[5]  H. Bender,et al.  Strain Enhanced nMOS Using In Situ Doped Embedded $\hbox{Si}_{1 - x}\hbox{C}_{x}$ S/D Stressors With up to 1.5% Substitutional Carbon Content Grown Using a Novel Deposition Process , 2008, IEEE Electron Device Letters.

[6]  M. Gerhardt,et al.  Multiple Stress Memorization In Advanced SOI CMOS Technologies , 2007, 2007 IEEE Symposium on VLSI Technology.

[7]  K. Jones,et al.  Kinetics and morphological instabilities of stressed solid-solid phase transformations. , 2008, Physical review letters.

[8]  R. Chau,et al.  A 45nm Logic Technology with High-k+Metal Gate Transistors, Strained Silicon, 9 Cu Interconnect Layers, 193nm Dry Patterning, and 100% Pb-free Packaging , 2007, 2007 IEEE International Electron Devices Meeting.

[9]  T. Grasser,et al.  Simultaneous Extraction of Recoverable and Permanent Components Contributing to Bias-Temperature Instability , 2007, 2007 IEEE International Electron Devices Meeting.

[10]  G. Burbach,et al.  Dual stress liner for high performance sub-45nm gate length SOI CMOS manufacturing , 2004, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..

[11]  D. Greenlaw,et al.  Integration and optimization of embedded-sige, compressive and tensile stressed liner films, and stress memorization in advanced SOI CMOS technologies , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[12]  Stathis,et al.  Atomic hydrogen reactions with Pb centers at the (100) Si/SiO2 interface. , 1994, Physical review letters.

[13]  H. Tigelaar,et al.  Ni-based FUSI gates: CMOS Integration for 45nm node and beyond , 2006, 2006 International Electron Devices Meeting.

[14]  S. Thompson,et al.  Uniaxial-process-induced strained-Si: extending the CMOS roadmap , 2006, IEEE Transactions on Electron Devices.

[15]  P. Stolk,et al.  Stress Memorization Technique (SMT) Optimization for 45nm CMOS , 2006, 2006 Symposium on VLSI Technology, 2006. Digest of Technical Papers..

[16]  T. Eimori,et al.  Novel locally strained channel technique for high performance 55nm CMOS , 2002, Digest. International Electron Devices Meeting,.

[17]  S. Fujita,et al.  Scalable eSiGe S/D Technology with Less Layout Dependence for 45-nm Generation , 2006, 2006 Symposium on VLSI Technology, 2006. Digest of Technical Papers..

[18]  J. Sudijono,et al.  Novel Enhanced Stressor with Graded Embedded SiGe Source/Drain for High Performance CMOS Devices , 2006, 2006 International Electron Devices Meeting.

[19]  S. De Gendt,et al.  Low VT CMOS using doped Hf-based oxides, TaC-based Metals and Laser-only Anneal , 2007, 2007 IEEE International Electron Devices Meeting.

[20]  F. Volpi,et al.  Characterisation of silicon nitride thin films used as stressor liners on CMOS FETs , 2008, 2008 9th International Conference on Ultimate Integration of Silicon.

[21]  Pierre Morin,et al.  Mobility Enhancement by Strained Nitride Liners for 65nm CMOS Logic Design Features , 2006 .

[22]  Mihaela Balseanu,et al.  Post Deposition Ultraviolet Treatment of Silicon Nitride Dielectric: Modeling and Experiment , 2006 .

[23]  M. Haond,et al.  A Low Cost Drive Current Enhancement Technique Using Shallow Trench Isolation Induced Stress for 45-nm Node , 2006, 2006 Symposium on VLSI Technology, 2006. Digest of Technical Papers..

[24]  B. Hornung,et al.  Modeling the effect of source/drain sidewall spacer process on boron ultra shallow junctions , 2003, International Conference on Simulation of Semiconductor Processes and Devices, 2003. SISPAD 2003..