Estimation of Displacements from Two 3-D Frames Obtained From Stereo

A method for estimating 3D displacements from two stereo frames is presented. It is based on the hypothesize-and-verify paradigm used to match 3D line segments between the two frames. In order to reduce the complexity of the method, an assumption is made that objects are rigid. The formulate a set of complete rigidity constraints for 3D line segments and integrate the uncertainty of measurements in this formation. The hypothesize-and-verify stages of the method use an extended Kalman filter to produce estimates of the displacements and of their uncertainty. The algorithm is shown to work on indoor and natural scenes. It is also shown to be easily extended to the case in which several mobile objects are present. The method is quite robust, fast, and has been thoroughly tested on hundreds of real stereo frames. >

[1]  O. Faugeras,et al.  A preliminary investigation of the problem of determining ego- and object motions from stereo , 1988, [1988 Proceedings] 9th International Conference on Pattern Recognition.

[2]  Thomas S. Huang,et al.  Image Sequence Analysis: Motion Estimation , 1981 .

[3]  Olivier D. Faugeras,et al.  HYPER: A New Approach for the Recognition and Positioning of Two-Dimensional Objects , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Olivier D. Faugeras,et al.  Tracking and grouping 3D line segments , 1990, [1990] Proceedings Third International Conference on Computer Vision.

[5]  K. S. Arun,et al.  Least-Squares Fitting of Two 3-D Point Sets , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  R. Chellappa,et al.  Experiments and uniqueness results on object structure and kinematics from a sequence of monocular images , 1989, [1989] Proceedings. Workshop on Visual Motion.

[7]  M. Hebert,et al.  The Representation, Recognition, and Locating of 3-D Objects , 1986 .

[8]  Olivier D. Faugeras,et al.  Analysis Of A Sequence Of Stereo Scenes Containing Multiple Moving Objects Using Rigidity Constraints , 1988, [1988 Proceedings] Second International Conference on Computer Vision.

[9]  H. C. Longuet-Higgins,et al.  A computer algorithm for reconstructing a scene from two projections , 1981, Nature.

[10]  Thomas S. Huang,et al.  Estimating three-dimensional motion parameters of a rigid planar patch , 1981 .

[11]  Kenneth S. Roberts,et al.  A new representation for a line , 1988, Proceedings CVPR '88: The Computer Society Conference on Computer Vision and Pattern Recognition.

[12]  J P Frisby,et al.  PMF: A Stereo Correspondence Algorithm Using a Disparity Gradient Limit , 1985, Perception.

[13]  David G. Lowe,et al.  Perceptual Organization and Visual Recognition , 2012 .

[14]  Hugh F. Durrant-Whyte Uncertain geometry in robotics , 1988, IEEE J. Robotics Autom..

[15]  Hans-Hellmut Nagel,et al.  Displacement vectors derived from second-order intensity variations in image sequences , 1983, Comput. Vis. Graph. Image Process..

[16]  Robert C. Bolles,et al.  3DPO's strategy for matching three-dimensional objects in range data , 1984, ICRA.

[17]  Olivier Faugeras,et al.  Building a 3D world model with a mobile robot: 3D line segment representation and integration , 1990, [1990] Proceedings. 10th International Conference on Pattern Recognition.

[18]  Jean-Daniel Boissonnat,et al.  Towards a Flexible Vision System , 1983 .

[19]  Rama Chellappa,et al.  3-D Motion Estimation Using a Sequence of Noisy Stereo Images: Models, Estimation, and Uniqueness Results , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  W. Eric L. Grimson,et al.  Localizing Overlapping Parts by Searching the Interpretation Tree , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Thomas S. Huang,et al.  Maximal matching of 3-D points for multiple-object motion estimation , 1988, Pattern Recognit..

[22]  R. Chellappa,et al.  Recursive 3-D motion estimation from a monocular image sequence , 1990 .

[23]  Olivier D. Faugeras,et al.  Building visual maps by combining noisy stereo measurements , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[24]  S. Ullman The Interpretation of Visual Motion , 1979 .

[25]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[26]  J. Aggarwal,et al.  LINE-BASED COMPUTATION OF STRUCTURE AND MOTION USING ANGULAR INVARIANCE. , 1986 .

[27]  Alan M. Wood,et al.  Motion analysis , 1986 .

[28]  O. D. Faugeras,et al.  Calibration of a mobile robot with application to visual navigation , 1989, [1989] Proceedings. Workshop on Visual Motion.

[29]  Steven D. Blostein,et al.  ROBUST ALGORITHMS FOR MOTION ESTIMATION BASED ON TWO SEQUENTIAL STEREO IMAGE PAIRS. , 1985 .

[30]  Gilad Adiv,et al.  Inherent Ambiguities in Recovering 3-D Motion and Structure from a Noisy Flow Field , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  Martin A. Fischler,et al.  Computational Stereo , 1982, CSUR.

[32]  O. D. Faugeras,et al.  A few steps toward artificial 3-D vision , 1989 .

[33]  Robert C. Bolles,et al.  Locating Partially Visible Objects: The Local Feature Focus Method , 1980, AAAI.

[34]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[35]  Jake K. Aggarwal,et al.  On the computation of motion from sequences of images-A review , 1988, Proc. IEEE.

[36]  Nicholas Ayache,et al.  Artificial vision for mobile robots - stereo vision and multisensory perception , 1991 .

[37]  W. Eric L. Grimson,et al.  Computational Experiments with a Feature Based Stereo Algorithm , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[38]  Hormoz Shariat,et al.  Motion Estimation with More than Two Frames , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[39]  Ellen C. Hildreth,et al.  Measurement of Visual Motion , 1984 .

[40]  Olivier D. Faugeras,et al.  Building, Registrating, and Fusing Noisy Visual Maps , 1988, Int. J. Robotics Res..

[41]  Jake K. Aggarwal,et al.  Determining object motion in a sequence of stereo images , 1987, IEEE Journal on Robotics and Automation.

[42]  Narendra Ahuja,et al.  3-D Motion Estimation, Understanding, and Prediction from Noisy Image Sequences , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[43]  W. Grimson,et al.  Model-Based Recognition and Localization from Sparse Range or Tactile Data , 1984 .

[44]  John Porrill,et al.  Matching geometrical descriptions in three-space , 1987, Image Vis. Comput..

[45]  Olivier Faugeras,et al.  Maintaining representations of the environment of a mobile robot , 1988, IEEE Trans. Robotics Autom..