The multi-water-bag equations for collisionless kinetic modeling
暂无分享,去创建一个
Yann Brenier | Nicolas Besse | Florent Berthelin | Y. Brenier | P. Bertrand | N. Besse | F. Berthelin | Pierre Bertrand
[1] Holloway,et al. Undamped plasma waves. , 1991, Physical review. A, Atomic, molecular, and optical physics.
[2] Pierre-Louis Lions,et al. Regularity of the moments of the solution of a Transport Equation , 1988 .
[3] P. Bertrand,et al. Nonlinear plasma oscillations in terms of multiple-water-bag eigenmodes. [Water-bag model] , 1976 .
[4] T. Yabe,et al. Cubic interpolated propagation scheme for solving the hyper-dimensional Vlasov-Poisson equation in phase space , 1999 .
[5] J. Gillis,et al. Methods in Computational Physics , 1964 .
[6] P. Bertrand,et al. Frequency shift of non linear electron plasma oscillation , 1969 .
[7] S. K. Trehan,et al. Plasma oscillations (I) , 1960 .
[8] P. Bertrand,et al. Non linear electron plasma oscillation: the “water bag model” , 1968 .
[9] Alexis Vasseur,et al. Convergence of a semi-discrete kinetic scheme for the system of isentropic gas dynamics with \gamma=3 , 1999 .
[10] Pierre-Louis Lions,et al. Lp regularity of velocity averages , 1991 .
[11] D. Gabor,et al. Plasma oscillations , 1956 .
[12] Ely M. Gelbard,et al. Methods in Computational Physics, Vol. I , 1964 .
[13] X. Garbet,et al. Gyrokinetic modeling: A multi-water-bag approach , 2007 .
[14] Laurent Gosse,et al. Multiphase semiclassical approximation of an electron in a one-dimensional crystalline lattice: I. homogeneous problems , 2004 .
[15] N. G. Van Kampen,et al. On the theory of stationary waves in plasmas , 1955 .
[16] P. Morel,et al. The water bag model and gyrokinetic applications , 2008 .
[17] E. L. Lindman,et al. Plasma simulation studies of stimulated scattering processes in laser‐irradiated plasmas , 1975 .
[18] Y. Brenier. Résolution d'équations d'évolution quasilinéaires en dimension N d'espace à l'aide d'équations linéaires en dimension N + 1 , 1983 .
[19] P. Morel,et al. Weak turbulence theory and simulation of the gyro-water-bag model. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.
[20] Yann Brenier,et al. Averaged Multivalued Solutions for Scalar Conservation Laws , 1984 .
[21] Alexis Vasseur. Kinetic Semidiscretization of Scalar Conservation Laws and Convergence by Using Averaging Lemmas , 1999 .
[22] R. Dewar,et al. Nonlinear Frequency Shift of a Plasma Wave , 1972 .
[23] C. Lancellotti,et al. Time-asymptotic traveling-wave solutions to the nonlinear Vlasov-Poisson-Ampere equations , 1999 .
[24] T. S. Hahm,et al. Nonlinear gyrokinetic equations for tokamak microturbulence , 1988 .
[25] N. Besse. On the Cauchy problem for the gyro-water-bag model , 2011 .
[26] Pierre Bertrand,et al. A wavelet-MRA-based adaptive semi-Lagrangian method for the relativistic Vlasov-Maxwell system , 2008, J. Comput. Phys..
[27] P. Bertrand,et al. Stimulated-Raman-scatter behavior in a relativistically hot plasma slab and an electromagnetic low-order pseudocavity. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.
[28] Douglas N. Arnold,et al. Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..
[29] Max Bezard,et al. Régularité $L\sp p$ précisée des moyennes dans les équations de transport , 1994 .
[30] Y. Brenier,et al. A kinetic formulation for multi-branch entropy solutions of scalar conservation laws , 1998 .
[31] D. Depackh. The Water-bag Model of a Sheet Electron Beamy , 1962 .
[32] B. Perthame,et al. A kinetic equation with kinetic entropy functions for scalar conservation laws , 1991 .
[33] L. Gosse. Using K-Branch Entropy Solutions for Multivalued Geometric Optics Computations , 2002 .
[34] Chi-Wang Shu,et al. Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..
[35] P. Bertrand,et al. Saturation process induced by vortex-merging in numerical Vlasov-Maxwell experiments of stimulated Raman backscattering , 2007 .
[36] Nicolas Besse,et al. Self-induced transparency scenario revisited via beat-wave heating induced by Doppler shift in overdense plasma layer , 2007 .
[37] Laurent Villard,et al. A drift-kinetic Semi-Lagrangian 4D code for ion turbulence simulation , 2006, J. Comput. Phys..
[38] N SIAMJ.. KINETIC SEMIDISCRETIZATION OF SCALAR CONSERVATION LAWS AND CONVERGENCE BY USING AVERAGING LEMMAS , 1999 .
[39] J. M. Greene,et al. EXACT NON-LINEAR PLASMA OSCILLATIONS , 1957 .
[40] François Bouchut,et al. Relaxation to isentropic gas dynamics for a BGK system with single kinetic entropy , 2002 .
[41] Nicolas Besse,et al. Semi-Lagrangian schemes for the Vlasov equation on an unstructured mesh of phase space , 2003 .
[42] Chi-Wang Shu,et al. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems , 1989 .
[43] U. Finzi. Accessibility of exact nonlinear stationary states in water-bag model computer experiments , 1972 .
[44] Laurent Gosse,et al. TWO MOMENT SYSTEMS FOR COMPUTING MULTIPHASE SEMICLASSICAL LIMITS OF THE SCHRÖDINGER EQUATION , 2003 .
[45] B. Perthame,et al. A kinetic formulation of multidimensional scalar conservation laws and related equations , 1994 .
[46] Y. Giga,et al. A kinetic construction of global solutions of first order quasilinear equations , 1983 .
[47] C. Lancellotti,et al. Time-asymptotic wave propagation in collisionless plasmas. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.
[48] Chi-Wang Shu,et al. Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..
[49] Shi Jin,et al. Multi-phase computations of the semiclassical limit of the Schrödinger equation and related problems: Whitham vs Wigner , 2003 .
[50] P. Bertrand,et al. Multiple “water-bag” model and Landau damping , 1971 .
[51] Laurent Gosse,et al. Multiphase semiclassical approximation of an electron in a one-dimensional crystalline lattice II. impurities, confinement and Bloch oscillations , 2004 .
[52] G. Karniadakis,et al. Spectral/hp Element Methods for CFD , 1999 .