The multi-water-bag equations for collisionless kinetic modeling

In this paper we consider the multi-water-bag model for collisionless kinetic equations. The multi-water-bag representation of the statistical distribution function of particles can be viewed as a special class of exact weak solution of the Vlasov equation, allowing to reduce this latter into a set of hydrodynamic equations while keeping its kinetic character. After recalling the link of the multi-water-bag model with kinetic formulation of conservation laws, we derive different multi-water-bag (MWB) models, namely the Poisson-MWB, the quasineutral-MWB and the electromagnetic-MWB models. These models are very promising because they reveal to be very useful for the theory and numerical simulations of laser-plasma and gyrokinetic physics. In this paper we prove some existence and uniqueness results for classical solutions of these different models. We next propose numerical schemes based on Discontinuous Garlerkin methods to solve these equations. We then present some numerical simulations of non linear problems arising in plasma physics for which we know some analytical results.

[1]  Holloway,et al.  Undamped plasma waves. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[2]  Pierre-Louis Lions,et al.  Regularity of the moments of the solution of a Transport Equation , 1988 .

[3]  P. Bertrand,et al.  Nonlinear plasma oscillations in terms of multiple-water-bag eigenmodes. [Water-bag model] , 1976 .

[4]  T. Yabe,et al.  Cubic interpolated propagation scheme for solving the hyper-dimensional Vlasov-Poisson equation in phase space , 1999 .

[5]  J. Gillis,et al.  Methods in Computational Physics , 1964 .

[6]  P. Bertrand,et al.  Frequency shift of non linear electron plasma oscillation , 1969 .

[7]  S. K. Trehan,et al.  Plasma oscillations (I) , 1960 .

[8]  P. Bertrand,et al.  Non linear electron plasma oscillation: the “water bag model” , 1968 .

[9]  Alexis Vasseur,et al.  Convergence of a semi-discrete kinetic scheme for the system of isentropic gas dynamics with \gamma=3 , 1999 .

[10]  Pierre-Louis Lions,et al.  Lp regularity of velocity averages , 1991 .

[11]  D. Gabor,et al.  Plasma oscillations , 1956 .

[12]  Ely M. Gelbard,et al.  Methods in Computational Physics, Vol. I , 1964 .

[13]  X. Garbet,et al.  Gyrokinetic modeling: A multi-water-bag approach , 2007 .

[14]  Laurent Gosse,et al.  Multiphase semiclassical approximation of an electron in a one-dimensional crystalline lattice: I. homogeneous problems , 2004 .

[15]  N. G. Van Kampen,et al.  On the theory of stationary waves in plasmas , 1955 .

[16]  P. Morel,et al.  The water bag model and gyrokinetic applications , 2008 .

[17]  E. L. Lindman,et al.  Plasma simulation studies of stimulated scattering processes in laser‐irradiated plasmas , 1975 .

[18]  Y. Brenier Résolution d'équations d'évolution quasilinéaires en dimension N d'espace à l'aide d'équations linéaires en dimension N + 1 , 1983 .

[19]  P. Morel,et al.  Weak turbulence theory and simulation of the gyro-water-bag model. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  Yann Brenier,et al.  Averaged Multivalued Solutions for Scalar Conservation Laws , 1984 .

[21]  Alexis Vasseur Kinetic Semidiscretization of Scalar Conservation Laws and Convergence by Using Averaging Lemmas , 1999 .

[22]  R. Dewar,et al.  Nonlinear Frequency Shift of a Plasma Wave , 1972 .

[23]  C. Lancellotti,et al.  Time-asymptotic traveling-wave solutions to the nonlinear Vlasov-Poisson-Ampere equations , 1999 .

[24]  T. S. Hahm,et al.  Nonlinear gyrokinetic equations for tokamak microturbulence , 1988 .

[25]  N. Besse On the Cauchy problem for the gyro-water-bag model , 2011 .

[26]  Pierre Bertrand,et al.  A wavelet-MRA-based adaptive semi-Lagrangian method for the relativistic Vlasov-Maxwell system , 2008, J. Comput. Phys..

[27]  P. Bertrand,et al.  Stimulated-Raman-scatter behavior in a relativistically hot plasma slab and an electromagnetic low-order pseudocavity. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[29]  Max Bezard,et al.  Régularité $L\sp p$ précisée des moyennes dans les équations de transport , 1994 .

[30]  Y. Brenier,et al.  A kinetic formulation for multi-branch entropy solutions of scalar conservation laws , 1998 .

[31]  D. Depackh The Water-bag Model of a Sheet Electron Beamy , 1962 .

[32]  B. Perthame,et al.  A kinetic equation with kinetic entropy functions for scalar conservation laws , 1991 .

[33]  L. Gosse Using K-Branch Entropy Solutions for Multivalued Geometric Optics Computations , 2002 .

[34]  Chi-Wang Shu,et al.  Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..

[35]  P. Bertrand,et al.  Saturation process induced by vortex-merging in numerical Vlasov-Maxwell experiments of stimulated Raman backscattering , 2007 .

[36]  Nicolas Besse,et al.  Self-induced transparency scenario revisited via beat-wave heating induced by Doppler shift in overdense plasma layer , 2007 .

[37]  Laurent Villard,et al.  A drift-kinetic Semi-Lagrangian 4D code for ion turbulence simulation , 2006, J. Comput. Phys..

[38]  N SIAMJ. KINETIC SEMIDISCRETIZATION OF SCALAR CONSERVATION LAWS AND CONVERGENCE BY USING AVERAGING LEMMAS , 1999 .

[39]  J. M. Greene,et al.  EXACT NON-LINEAR PLASMA OSCILLATIONS , 1957 .

[40]  François Bouchut,et al.  Relaxation to isentropic gas dynamics for a BGK system with single kinetic entropy , 2002 .

[41]  Nicolas Besse,et al.  Semi-Lagrangian schemes for the Vlasov equation on an unstructured mesh of phase space , 2003 .

[42]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems , 1989 .

[43]  U. Finzi Accessibility of exact nonlinear stationary states in water-bag model computer experiments , 1972 .

[44]  Laurent Gosse,et al.  TWO MOMENT SYSTEMS FOR COMPUTING MULTIPHASE SEMICLASSICAL LIMITS OF THE SCHRÖDINGER EQUATION , 2003 .

[45]  B. Perthame,et al.  A kinetic formulation of multidimensional scalar conservation laws and related equations , 1994 .

[46]  Y. Giga,et al.  A kinetic construction of global solutions of first order quasilinear equations , 1983 .

[47]  C. Lancellotti,et al.  Time-asymptotic wave propagation in collisionless plasmas. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[48]  Chi-Wang Shu,et al.  Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..

[49]  Shi Jin,et al.  Multi-phase computations of the semiclassical limit of the Schrödinger equation and related problems: Whitham vs Wigner , 2003 .

[50]  P. Bertrand,et al.  Multiple “water-bag” model and Landau damping , 1971 .

[51]  Laurent Gosse,et al.  Multiphase semiclassical approximation of an electron in a one-dimensional crystalline lattice II. impurities, confinement and Bloch oscillations , 2004 .

[52]  G. Karniadakis,et al.  Spectral/hp Element Methods for CFD , 1999 .