Mathematical modelling of oscillatory behaviour during methane oxidation over palladium catalysts

[1]  M. Stamatakis,et al.  A review of multiscale modeling of metal-catalyzed reactions: Mechanism development for complexity and emergent behavior , 2011 .

[2]  M. Suvanto,et al.  Role of the Interface between Pd and PdO in Methane Dissociation , 2011 .

[3]  Guichang Wang,et al.  C–H bond activation of methane on clean and oxygen pre-covered metals: A systematic theoretical study , 2011 .

[4]  N. Rösch,et al.  Theoretical study of carbon species on Pd(111): competition between migration of C atoms to the subsurface interlayer and formation of Cn clusters on the surface. , 2009, Physical chemistry chemical physics : PCCP.

[5]  M. M. Slinko,et al.  The study of the oscillatory behavior during methane oxidation over Pd catalysts , 2009 .

[6]  Guichang Wang,et al.  Methane combustion on Pd-based model catalysts: Structure sensitive or insensitive? , 2009, The Journal of chemical physics.

[7]  M. M. Slinko,et al.  Nonlinear behaviour during methane and ethane oxidation over Ni, Co and Pd catalysts , 2009 .

[8]  Xiang-Yun Guo,et al.  Monte Carlo simulation of the oscillatory behavior in partial oxidation of methane on nickel catalyst under nonisothermal conditions , 2009 .

[9]  Anders Holmen,et al.  A review of catalytic partial oxidation of methane to synthesis gas with emphasis on reaction mechanisms over transition metal catalysts , 2008 .

[10]  Huan Li,et al.  Monte Carlo simulation of the oscillatory behavior in partial oxidation of methane on nickel catalyst , 2008 .

[11]  G. Groppi,et al.  Steady‐state and transient analysis of a CH4–catalytic partial oxidation reformer , 2006 .

[12]  V. Korchak,et al.  Study of nickel catalyst in oscillating regime of methane oxidation by means of gravimetry and mass-spectrometry , 2006 .

[13]  N. V. Peskov,et al.  Mathematical modelling of oscillatory behaviour during methane oxidation over Ni catalysts , 2006 .

[14]  R. Schlögl,et al.  Carbon incorporation in Pd(111) by adsorption and dehydrogenation of ethene. , 2006, The journal of physical chemistry. B.

[15]  Xunli Zhang,et al.  Oscillatory behaviour observed in the rate of oxidation of methane over metal catalysts , 2005 .

[16]  L. Gracia,et al.  Migration of the subsurface C impurity in Pd(111) , 2005 .

[17]  W. Green,et al.  Kinetic model for polycrystalline Pd/PdOx in oxidation/reduction cycles , 2003 .

[18]  Xunli Zhang,et al.  Further Studies on Oscillations over Nickel Wires During the Partial Oxidation of Methane , 2003 .

[19]  Zhipan Liu,et al.  General rules for predicting where a catalytic reaction should occur on metal surfaces: a density functional theory study of C-H and C-O bond breaking/making on flat, stepped, and kinked metal surfaces. , 2003, Journal of the American Chemical Society.

[20]  Xunli Zhang,et al.  Oscillatory behaviour during the oxidation of methane over palladium metal catalysts , 2003 .

[21]  Xunli Zhang,et al.  Oscillatory Behavior During the Partial Oxidation of Methane Over Nickel Foils , 2002 .

[22]  M. Neurock Catalysis from First-Principles , 2001 .

[23]  H. Freund,et al.  The CO oxidation kinetics on supported Pd model catalysts: A molecular beam/in situ time-resolved infrared reflection absorption spectroscopy study , 2001 .

[24]  Jörg Frauhammer,et al.  Modelling steady state and ignition during catalytic methane oxidation in a monolith reactor , 2000 .

[25]  Xiaohong Zhu,et al.  Chemisorption of methane over Ni/Al2O3 catalysts , 2000 .

[26]  Nils I. Jaeger,et al.  Mathematical modeling of complex oscillatory phenomena during CO oxidation over Pd zeolite catalysts , 1999 .

[27]  J. Nørskov Catalysis from first principles , 1999 .

[28]  Olaf Deutschmann,et al.  Modeling the partial oxidation of methane in a short‐contact‐time reactor , 1998 .

[29]  Manfred Baerns,et al.  Interaction of methane with supported Pd catalysts studied by adsorption microcalorimetry and TPD/TPSR techniques , 1997 .

[30]  M. Pessa,et al.  Activated adsorption of methane on clean and oxygen-modified Pt{111} and Pd{110} , 1997 .

[31]  T. Nevell,et al.  Oscillatory behaviour of Pd/Al2O3, Pd–Pt/Al2O3 and Pd/Al2O3–CeO2 in the oxidation of methane , 1996 .

[32]  R. A. Santen,et al.  Concepts in Theoretical Heterogeneous Catalytic Reactivity , 1995 .

[33]  K. Krischer,et al.  The role of adsorbate–adsorbate interactions in the rate oscillations in catalytic CO oxidation on Pd (110) , 1994 .

[34]  W. Weber,et al.  In situ ellipsometric study of a palladium catalyst during the oxidation of methane , 1994 .

[35]  F. Solymosi,et al.  Decomposition of CH4 over Supported Pd Catalysts , 1994 .

[36]  R. Imbihl,et al.  Mathematical modeling of kinetic oscillations in the catalytic CO oxidation on Pd(110): The subsurface oxygen model , 1990 .

[37]  B. Koel,et al.  Interaction of oxygen with Pd(111): High effective O2 pressure conditions by using nitrogen dioxide , 1990 .

[38]  G. Ertl,et al.  Kinetic oscillations during the catalytic CO oxidation on Pd(110): The role of subsurface oxygen , 1989 .

[39]  R. Madix,et al.  The adsorption of H2O on clean and oxygen-covered pd(100): Formation and reaction of OH groups , 1984 .

[40]  D. Trimm Catalytic combustion (review) , 1983 .

[41]  G. Ertl,et al.  Adsorption of hydrogen on Pd(100) , 1980 .

[42]  T. Engel,et al.  A molecular-beam investigation of the reaction H2 + 12O2 → H2O on Pd(111) , 1979 .

[43]  M. Boudart Structure of metallic catalysts , 1978 .

[44]  J. Anderson Structure of metallic catalysts , 1975 .

[45]  P. W. Palmberg,et al.  Structural Influences on Adsorbate Binding Energy. I. Carbon Monoxide on (100) Palladium , 1969 .