The Lie–Trotter splitting for nonlinear evolutionary problems with critical parameters: a compact local error representation and application to nonlinear Schrödinger equations in the semiclassical regime

In the present work, we investigate the error behaviour of exponential operator splitting methods for nonlinear evolutionary problems. In particular, our concern is to deduce an exact local error representation that is suitable in the presence of critical parameters. Essential tools in the theoretical analysis including time-dependent nonlinear Schrodinger equations in the semi-classical regime as well as parabolic initial-boundary value problems with high spatial gradients are an abstract formulation of differential equations on function spaces and the formal calculus of Lie-derivatives. We expose the general mechanism on the basis of the least technical example method, the first-order Lie–Trotter splitting

[1]  S. Descombes,et al.  An exact local error representation of exponential operator splitting methods for evolutionary problems and applications to linear Schrödinger equations in the semi-classical regime , 2010 .

[2]  Christian Lubich,et al.  On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations , 2008, Math. Comput..

[3]  G. Quispel,et al.  Acta Numerica 2002: Splitting methods , 2002 .

[4]  Daniel B. Henry Geometric Theory of Semilinear Parabolic Equations , 1989 .

[5]  G. Strang On the Construction and Comparison of Difference Schemes , 1968 .

[6]  E. Gross Structure of a quantized vortex in boson systems , 1961 .

[7]  Shi Jin,et al.  Numerical Study of Time-Splitting Spectral Discretizations of Nonlinear Schrödinger Equations in the Semiclassical Regimes , 2003, SIAM J. Sci. Comput..

[8]  R. Nagel,et al.  One-parameter semigroups for linear evolution equations , 1999 .

[9]  Mechthild Thalhammer,et al.  High-order time-splitting Hermite and Fourier spectral methods , 2009, J. Comput. Phys..

[10]  Jie Shen,et al.  A Fourth-Order Time-Splitting Laguerre-Hermite Pseudospectral Method for Bose-Einstein Condensates , 2005, SIAM J. Sci. Comput..

[11]  A. Lunardi Analytic Semigroups and Optimal Regularity in Parabolic Problems , 2003 .

[12]  M. Thalhammer,et al.  On the convergence of splitting methods for linear evolutionary Schrödinger equations involving an unbounded potential , 2009 .

[13]  H. Trotter On the product of semi-groups of operators , 1959 .

[14]  Amnon Pazy,et al.  Semigroups of Linear Operators and Applications to Partial Differential Equations , 1992, Applied Mathematical Sciences.

[15]  Víctor M. Pérez-García,et al.  Numerical methods for the simulation of trapped nonlinear Schrödinger systems , 2003, Appl. Math. Comput..

[16]  S. Chin Higher-order splitting algorithms for solving the nonlinear Schrödinger equation and their instabilities. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  E. Hairer,et al.  Solving Ordinary Differential Equations II , 2010 .

[18]  R. G. Cooke Functional Analysis and Semi-Groups , 1949, Nature.

[19]  L. Gauckler,et al.  Convergence of a split-step Hermite method for the Gross–Pitaevskii equation , 2011 .

[20]  G. Quispel,et al.  Splitting methods , 2002, Acta Numerica.

[21]  O. Koch,et al.  Embedded Split-Step Formulae for the Time Integration of Nonlinear Evolution Equations , 2010 .

[22]  Arieh Iserles,et al.  Effective approximation for the linear time-dependent Schrödinger equation , 2012 .

[23]  C. Lubich,et al.  Error Bounds for Exponential Operator Splittings , 2000 .

[24]  P. Markowich,et al.  On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime , 2002 .

[25]  Stéphane Descombes,et al.  On the local and global errors of splitting approximations of reaction–diffusion equations with high spatial gradients , 2007, Int. J. Comput. Math..

[26]  P. Markowich,et al.  Numerical solution of the Gross--Pitaevskii equation for Bose--Einstein condensation , 2003, cond-mat/0303239.

[27]  Erwan Faou,et al.  Computing Semiclassical Quantum Dynamics with Hagedorn Wavepackets , 2009, SIAM J. Sci. Comput..

[28]  Stéphane Descombes,et al.  Strang's formula for holomorphic semi-groups , 2002 .

[29]  Mechthild Thalhammer,et al.  High-Order Exponential Operator Splitting Methods for Time-Dependent Schrödinger Equations , 2008, SIAM J. Numer. Anal..

[30]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .