The Lie–Trotter splitting for nonlinear evolutionary problems with critical parameters: a compact local error representation and application to nonlinear Schrödinger equations in the semiclassical regime
暂无分享,去创建一个
[1] S. Descombes,et al. An exact local error representation of exponential operator splitting methods for evolutionary problems and applications to linear Schrödinger equations in the semi-classical regime , 2010 .
[2] Christian Lubich,et al. On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations , 2008, Math. Comput..
[3] G. Quispel,et al. Acta Numerica 2002: Splitting methods , 2002 .
[4] Daniel B. Henry. Geometric Theory of Semilinear Parabolic Equations , 1989 .
[5] G. Strang. On the Construction and Comparison of Difference Schemes , 1968 .
[6] E. Gross. Structure of a quantized vortex in boson systems , 1961 .
[7] Shi Jin,et al. Numerical Study of Time-Splitting Spectral Discretizations of Nonlinear Schrödinger Equations in the Semiclassical Regimes , 2003, SIAM J. Sci. Comput..
[8] R. Nagel,et al. One-parameter semigroups for linear evolution equations , 1999 .
[9] Mechthild Thalhammer,et al. High-order time-splitting Hermite and Fourier spectral methods , 2009, J. Comput. Phys..
[10] Jie Shen,et al. A Fourth-Order Time-Splitting Laguerre-Hermite Pseudospectral Method for Bose-Einstein Condensates , 2005, SIAM J. Sci. Comput..
[11] A. Lunardi. Analytic Semigroups and Optimal Regularity in Parabolic Problems , 2003 .
[12] M. Thalhammer,et al. On the convergence of splitting methods for linear evolutionary Schrödinger equations involving an unbounded potential , 2009 .
[13] H. Trotter. On the product of semi-groups of operators , 1959 .
[14] Amnon Pazy,et al. Semigroups of Linear Operators and Applications to Partial Differential Equations , 1992, Applied Mathematical Sciences.
[15] Víctor M. Pérez-García,et al. Numerical methods for the simulation of trapped nonlinear Schrödinger systems , 2003, Appl. Math. Comput..
[16] S. Chin. Higher-order splitting algorithms for solving the nonlinear Schrödinger equation and their instabilities. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.
[17] E. Hairer,et al. Solving Ordinary Differential Equations II , 2010 .
[18] R. G. Cooke. Functional Analysis and Semi-Groups , 1949, Nature.
[19] L. Gauckler,et al. Convergence of a split-step Hermite method for the Gross–Pitaevskii equation , 2011 .
[20] G. Quispel,et al. Splitting methods , 2002, Acta Numerica.
[21] O. Koch,et al. Embedded Split-Step Formulae for the Time Integration of Nonlinear Evolution Equations , 2010 .
[22] Arieh Iserles,et al. Effective approximation for the linear time-dependent Schrödinger equation , 2012 .
[23] C. Lubich,et al. Error Bounds for Exponential Operator Splittings , 2000 .
[24] P. Markowich,et al. On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime , 2002 .
[25] Stéphane Descombes,et al. On the local and global errors of splitting approximations of reaction–diffusion equations with high spatial gradients , 2007, Int. J. Comput. Math..
[26] P. Markowich,et al. Numerical solution of the Gross--Pitaevskii equation for Bose--Einstein condensation , 2003, cond-mat/0303239.
[27] Erwan Faou,et al. Computing Semiclassical Quantum Dynamics with Hagedorn Wavepackets , 2009, SIAM J. Sci. Comput..
[28] Stéphane Descombes,et al. Strang's formula for holomorphic semi-groups , 2002 .
[29] Mechthild Thalhammer,et al. High-Order Exponential Operator Splitting Methods for Time-Dependent Schrödinger Equations , 2008, SIAM J. Numer. Anal..
[30] E. Hairer,et al. Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .